ON ALGEBRAS GENERATED BY INNER DERIVATIONS

We look for an effective description of the algebra DLie(X,B) of operators on a bimodule X over an algebra B, generated by all operators x → ax – xa, a ∈ B. It is shown that in some important examples DLie(X,B) consists of all elementary operators $\mathrm{x}\to \sum _{\mathrm{i}}{\mathrm{a}}_{\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2011-03, Vol.65 (2), p.281-305
Hauptverfasser: SHULMAN, TATIANA, SHULMAN, VICTOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 2
container_start_page 281
container_title Journal of operator theory
container_volume 65
creator SHULMAN, TATIANA
SHULMAN, VICTOR
description We look for an effective description of the algebra DLie(X,B) of operators on a bimodule X over an algebra B, generated by all operators x → ax – xa, a ∈ B. It is shown that in some important examples DLie(X,B) consists of all elementary operators $\mathrm{x}\to \sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}\mathrm{x}{\mathrm{b}}_{\mathrm{i}}$ satisfying the conditions $\sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}=\sum _{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}=0$. The Banach algebraic versions of these results are also obtained and applied to the description of closed Lie ideals in some Banach algebras, and to the proof of a density theorem for Lie algebras of operators on Hilbert space.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24715972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24715972</jstor_id><sourcerecordid>24715972</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-ab11e33a730bf054c8dcefdfcfcaaf3d0554c604f7f55759442652cc08365ee73</originalsourceid><addsrcrecordid>eNotjEFLwzAYQIMoWKc_QchZCHxJvvRrj9kWu0JpoesGnkaWJmBRlHYX_70DPT3eO7wblskCpSBCvGUZaCoFgsJ79rAsE4CWQCpjL13LbVO5dW_3vHKt6-3gtnz9xuv2Knzr-vpoh7pr94_sLvmPJT79c8UOr27Y7ETTVfXGNmKSRBfhz1JGrT1pOCcwGIoxxDSmkIL3SY9gri0HTJSMIVMiqtyoEKDQuYmR9Io9_32n5fI1n77n908__5wUkjQlKf0LA4Y34Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON ALGEBRAS GENERATED BY INNER DERIVATIONS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>SHULMAN, TATIANA ; SHULMAN, VICTOR</creator><creatorcontrib>SHULMAN, TATIANA ; SHULMAN, VICTOR</creatorcontrib><description>We look for an effective description of the algebra DLie(X,B) of operators on a bimodule X over an algebra B, generated by all operators x → ax – xa, a ∈ B. It is shown that in some important examples DLie(X,B) consists of all elementary operators $\mathrm{x}\to \sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}\mathrm{x}{\mathrm{b}}_{\mathrm{i}}$ satisfying the conditions $\sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}=\sum _{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}=0$. The Banach algebraic versions of these results are also obtained and applied to the description of closed Lie ideals in some Banach algebras, and to the proof of a density theorem for Lie algebras of operators on Hilbert space.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Algebra ; Hilbert spaces ; Homomorphisms ; Logical proofs ; Mathematical rings ; Mathematical theorems ; Polynomials ; Subalgebras ; Tensors</subject><ispartof>Journal of operator theory, 2011-03, Vol.65 (2), p.281-305</ispartof><rights>Copyright © 2011 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24715972$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24715972$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>SHULMAN, TATIANA</creatorcontrib><creatorcontrib>SHULMAN, VICTOR</creatorcontrib><title>ON ALGEBRAS GENERATED BY INNER DERIVATIONS</title><title>Journal of operator theory</title><description>We look for an effective description of the algebra DLie(X,B) of operators on a bimodule X over an algebra B, generated by all operators x → ax – xa, a ∈ B. It is shown that in some important examples DLie(X,B) consists of all elementary operators $\mathrm{x}\to \sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}\mathrm{x}{\mathrm{b}}_{\mathrm{i}}$ satisfying the conditions $\sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}=\sum _{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}=0$. The Banach algebraic versions of these results are also obtained and applied to the description of closed Lie ideals in some Banach algebras, and to the proof of a density theorem for Lie algebras of operators on Hilbert space.</description><subject>Algebra</subject><subject>Hilbert spaces</subject><subject>Homomorphisms</subject><subject>Logical proofs</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Polynomials</subject><subject>Subalgebras</subject><subject>Tensors</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjEFLwzAYQIMoWKc_QchZCHxJvvRrj9kWu0JpoesGnkaWJmBRlHYX_70DPT3eO7wblskCpSBCvGUZaCoFgsJ79rAsE4CWQCpjL13LbVO5dW_3vHKt6-3gtnz9xuv2Knzr-vpoh7pr94_sLvmPJT79c8UOr27Y7ETTVfXGNmKSRBfhz1JGrT1pOCcwGIoxxDSmkIL3SY9gri0HTJSMIVMiqtyoEKDQuYmR9Io9_32n5fI1n77n908__5wUkjQlKf0LA4Y34Q</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>SHULMAN, TATIANA</creator><creator>SHULMAN, VICTOR</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>20110301</creationdate><title>ON ALGEBRAS GENERATED BY INNER DERIVATIONS</title><author>SHULMAN, TATIANA ; SHULMAN, VICTOR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-ab11e33a730bf054c8dcefdfcfcaaf3d0554c604f7f55759442652cc08365ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Hilbert spaces</topic><topic>Homomorphisms</topic><topic>Logical proofs</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Polynomials</topic><topic>Subalgebras</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHULMAN, TATIANA</creatorcontrib><creatorcontrib>SHULMAN, VICTOR</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHULMAN, TATIANA</au><au>SHULMAN, VICTOR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON ALGEBRAS GENERATED BY INNER DERIVATIONS</atitle><jtitle>Journal of operator theory</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>65</volume><issue>2</issue><spage>281</spage><epage>305</epage><pages>281-305</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>We look for an effective description of the algebra DLie(X,B) of operators on a bimodule X over an algebra B, generated by all operators x → ax – xa, a ∈ B. It is shown that in some important examples DLie(X,B) consists of all elementary operators $\mathrm{x}\to \sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}\mathrm{x}{\mathrm{b}}_{\mathrm{i}}$ satisfying the conditions $\sum _{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}=\sum _{\mathrm{i}}{\mathrm{b}}_{\mathrm{i}}{\mathrm{a}}_{\mathrm{i}}=0$. The Banach algebraic versions of these results are also obtained and applied to the description of closed Lie ideals in some Banach algebras, and to the proof of a density theorem for Lie algebras of operators on Hilbert space.</abstract><pub>Theta Foundation</pub><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-4024
ispartof Journal of operator theory, 2011-03, Vol.65 (2), p.281-305
issn 0379-4024
1841-7744
language eng
recordid cdi_jstor_primary_24715972
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Algebra
Hilbert spaces
Homomorphisms
Logical proofs
Mathematical rings
Mathematical theorems
Polynomials
Subalgebras
Tensors
title ON ALGEBRAS GENERATED BY INNER DERIVATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20ALGEBRAS%20GENERATED%20BY%20INNER%20DERIVATIONS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=SHULMAN,%20TATIANA&rft.date=2011-03-01&rft.volume=65&rft.issue=2&rft.spage=281&rft.epage=305&rft.pages=281-305&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24715972%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24715972&rfr_iscdi=true