Theoretical enhancement of the Gaussian filtering of engineering surfaces

This study is an extension of the current use of Gaussian filters to smooth surface texture waveforms. It suggests an extension using Hermite polynomials to improve the definition of boundary lines and edges in the geometry of structured surfaces, and to enhance scratch and flaw detection. In additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2013-10, Vol.469 (2158), p.1-12
1. Verfasser: Whitehouse, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2158
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 469
creator Whitehouse, David J.
description This study is an extension of the current use of Gaussian filters to smooth surface texture waveforms. It suggests an extension using Hermite polynomials to improve the definition of boundary lines and edges in the geometry of structured surfaces, and to enhance scratch and flaw detection. In addition, a new filtering concept is introduced to enhance the detection of boundary lines and edges and to improve the understanding of their local geometry, thereby minimizing the uncertainties in structured surface filtering and characterization. How this approach can incorporate the measurement of free-form surfaces as well as help improve the fidelity in scratch and crack detection, positioning and characterization is also discussed.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24507929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24507929</jstor_id><sourcerecordid>24507929</sourcerecordid><originalsourceid>FETCH-jstor_primary_245079293</originalsourceid><addsrcrecordid>eNqFycsKwjAQQNEsFKzWTxDyA4X0Zc1afO27L0OYNCntVDLpwr8X0b2ry-WsRJKXxyqrVZFvxJZ5UErp-tQk4tE6nANGb2CUSA7I4IQU5WxldChvsDB7IGn9GDF46j-C1HvC7_ISLBjkVKwtjIz7X3ficL2053s2cJxD9wx-gvDqiqpWjS50-c_feio4Dg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical enhancement of the Gaussian filtering of engineering surfaces</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Whitehouse, David J.</creator><creatorcontrib>Whitehouse, David J.</creatorcontrib><description>This study is an extension of the current use of Gaussian filters to smooth surface texture waveforms. It suggests an extension using Hermite polynomials to improve the definition of boundary lines and edges in the geometry of structured surfaces, and to enhance scratch and flaw detection. In addition, a new filtering concept is introduced to enhance the detection of boundary lines and edges and to improve the understanding of their local geometry, thereby minimizing the uncertainties in structured surface filtering and characterization. How this approach can incorporate the measurement of free-form surfaces as well as help improve the fidelity in scratch and crack detection, positioning and characterization is also discussed.</description><identifier>ISSN: 1364-5021</identifier><language>eng</language><publisher>Royal Society</publisher><subject>Curvature ; Differential equations ; Differential operators ; Differentials ; Fourier transformations ; Geometric shapes ; Geometry ; Hermite polynomials ; Mechanical engineering ; Surface texture</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-10, Vol.469 (2158), p.1-12</ispartof><rights>COPYRIGHT © 2013 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24507929$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24507929$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Whitehouse, David J.</creatorcontrib><title>Theoretical enhancement of the Gaussian filtering of engineering surfaces</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>This study is an extension of the current use of Gaussian filters to smooth surface texture waveforms. It suggests an extension using Hermite polynomials to improve the definition of boundary lines and edges in the geometry of structured surfaces, and to enhance scratch and flaw detection. In addition, a new filtering concept is introduced to enhance the detection of boundary lines and edges and to improve the understanding of their local geometry, thereby minimizing the uncertainties in structured surface filtering and characterization. How this approach can incorporate the measurement of free-form surfaces as well as help improve the fidelity in scratch and crack detection, positioning and characterization is also discussed.</description><subject>Curvature</subject><subject>Differential equations</subject><subject>Differential operators</subject><subject>Differentials</subject><subject>Fourier transformations</subject><subject>Geometric shapes</subject><subject>Geometry</subject><subject>Hermite polynomials</subject><subject>Mechanical engineering</subject><subject>Surface texture</subject><issn>1364-5021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFycsKwjAQQNEsFKzWTxDyA4X0Zc1afO27L0OYNCntVDLpwr8X0b2ry-WsRJKXxyqrVZFvxJZ5UErp-tQk4tE6nANGb2CUSA7I4IQU5WxldChvsDB7IGn9GDF46j-C1HvC7_ISLBjkVKwtjIz7X3ficL2053s2cJxD9wx-gvDqiqpWjS50-c_feio4Dg</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Whitehouse, David J.</creator><general>Royal Society</general><scope/></search><sort><creationdate>20131008</creationdate><title>Theoretical enhancement of the Gaussian filtering of engineering surfaces</title><author>Whitehouse, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_245079293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Curvature</topic><topic>Differential equations</topic><topic>Differential operators</topic><topic>Differentials</topic><topic>Fourier transformations</topic><topic>Geometric shapes</topic><topic>Geometry</topic><topic>Hermite polynomials</topic><topic>Mechanical engineering</topic><topic>Surface texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitehouse, David J.</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitehouse, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical enhancement of the Gaussian filtering of engineering surfaces</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2013-10-08</date><risdate>2013</risdate><volume>469</volume><issue>2158</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1364-5021</issn><abstract>This study is an extension of the current use of Gaussian filters to smooth surface texture waveforms. It suggests an extension using Hermite polynomials to improve the definition of boundary lines and edges in the geometry of structured surfaces, and to enhance scratch and flaw detection. In addition, a new filtering concept is introduced to enhance the detection of boundary lines and edges and to improve the understanding of their local geometry, thereby minimizing the uncertainties in structured surface filtering and characterization. How this approach can incorporate the measurement of free-form surfaces as well as help improve the fidelity in scratch and crack detection, positioning and characterization is also discussed.</abstract><pub>Royal Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-10, Vol.469 (2158), p.1-12
issn 1364-5021
language eng
recordid cdi_jstor_primary_24507929
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Curvature
Differential equations
Differential operators
Differentials
Fourier transformations
Geometric shapes
Geometry
Hermite polynomials
Mechanical engineering
Surface texture
title Theoretical enhancement of the Gaussian filtering of engineering surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20enhancement%20of%20the%20Gaussian%20filtering%20of%20engineering%20surfaces&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Whitehouse,%20David%20J.&rft.date=2013-10-08&rft.volume=469&rft.issue=2158&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1364-5021&rft_id=info:doi/&rft_dat=%3Cjstor%3E24507929%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24507929&rfr_iscdi=true