Spectral statistics of permutation matrices
We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2014-01, Vol.372 (2007), p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2007 |
container_start_page | 1 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 372 |
creator | Oren, Idan Smilansky, Uzy |
description | We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24501996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24501996</jstor_id><sourcerecordid>24501996</sourcerecordid><originalsourceid>FETCH-jstor_primary_245019963</originalsourceid><addsrcrecordid>eNpjYeA0NDYz0TU1MI7gYOAqLs4yMDA0NDM14mTQDi5ITS4pSsxRKC5JLMksLslMLlbIT1MoSC3KLQWJ5Ocp5CaWFGUmpxbzMLCmJeYUp_JCaW4GWTfXEGcP3azikvyi-IKizNzEosp4IxNTA0NLSzNjQvIA8q4tKQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral statistics of permutation matrices</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Oren, Idan ; Smilansky, Uzy</creator><creatorcontrib>Oren, Idan ; Smilansky, Uzy</creatorcontrib><description>We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.</description><identifier>ISSN: 1364-503X</identifier><language>eng</language><publisher>Royal Society</publisher><subject>Data smoothing ; Eigenvalues ; Integers ; Mathematical functions ; Mathematical lattices ; Mathematical permutation ; Matrices ; Number theory ; Spectral graph theory ; Statistical variance</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2014-01, Vol.372 (2007), p.1-10</ispartof><rights>COPYRIGHT © 2014 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24501996$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24501996$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,829,58002,58235</link.rule.ids></links><search><creatorcontrib>Oren, Idan</creatorcontrib><creatorcontrib>Smilansky, Uzy</creatorcontrib><title>Spectral statistics of permutation matrices</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.</description><subject>Data smoothing</subject><subject>Eigenvalues</subject><subject>Integers</subject><subject>Mathematical functions</subject><subject>Mathematical lattices</subject><subject>Mathematical permutation</subject><subject>Matrices</subject><subject>Number theory</subject><subject>Spectral graph theory</subject><subject>Statistical variance</subject><issn>1364-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NDYz0TU1MI7gYOAqLs4yMDA0NDM14mTQDi5ITS4pSsxRKC5JLMksLslMLlbIT1MoSC3KLQWJ5Ocp5CaWFGUmpxbzMLCmJeYUp_JCaW4GWTfXEGcP3azikvyi-IKizNzEosp4IxNTA0NLSzNjQvIA8q4tKQ</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Oren, Idan</creator><creator>Smilansky, Uzy</creator><general>Royal Society</general><scope/></search><sort><creationdate>20140128</creationdate><title>Spectral statistics of permutation matrices</title><author>Oren, Idan ; Smilansky, Uzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_245019963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data smoothing</topic><topic>Eigenvalues</topic><topic>Integers</topic><topic>Mathematical functions</topic><topic>Mathematical lattices</topic><topic>Mathematical permutation</topic><topic>Matrices</topic><topic>Number theory</topic><topic>Spectral graph theory</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oren, Idan</creatorcontrib><creatorcontrib>Smilansky, Uzy</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oren, Idan</au><au>Smilansky, Uzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral statistics of permutation matrices</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2014-01-28</date><risdate>2014</risdate><volume>372</volume><issue>2007</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1364-503X</issn><abstract>We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.</abstract><pub>Royal Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2014-01, Vol.372 (2007), p.1-10 |
issn | 1364-503X |
language | eng |
recordid | cdi_jstor_primary_24501996 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Data smoothing Eigenvalues Integers Mathematical functions Mathematical lattices Mathematical permutation Matrices Number theory Spectral graph theory Statistical variance |
title | Spectral statistics of permutation matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20statistics%20of%20permutation%20matrices&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Oren,%20Idan&rft.date=2014-01-28&rft.volume=372&rft.issue=2007&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1364-503X&rft_id=info:doi/&rft_dat=%3Cjstor%3E24501996%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24501996&rfr_iscdi=true |