Spectral statistics of permutation matrices

We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2014-01, Vol.372 (2007), p.1-10
Hauptverfasser: Oren, Idan, Smilansky, Uzy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2007
container_start_page 1
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 372
creator Oren, Idan
Smilansky, Uzy
description We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24501996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24501996</jstor_id><sourcerecordid>24501996</sourcerecordid><originalsourceid>FETCH-jstor_primary_245019963</originalsourceid><addsrcrecordid>eNpjYeA0NDYz0TU1MI7gYOAqLs4yMDA0NDM14mTQDi5ITS4pSsxRKC5JLMksLslMLlbIT1MoSC3KLQWJ5Ocp5CaWFGUmpxbzMLCmJeYUp_JCaW4GWTfXEGcP3azikvyi-IKizNzEosp4IxNTA0NLSzNjQvIA8q4tKQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral statistics of permutation matrices</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Oren, Idan ; Smilansky, Uzy</creator><creatorcontrib>Oren, Idan ; Smilansky, Uzy</creatorcontrib><description>We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.</description><identifier>ISSN: 1364-503X</identifier><language>eng</language><publisher>Royal Society</publisher><subject>Data smoothing ; Eigenvalues ; Integers ; Mathematical functions ; Mathematical lattices ; Mathematical permutation ; Matrices ; Number theory ; Spectral graph theory ; Statistical variance</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2014-01, Vol.372 (2007), p.1-10</ispartof><rights>COPYRIGHT © 2014 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24501996$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24501996$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,829,58002,58235</link.rule.ids></links><search><creatorcontrib>Oren, Idan</creatorcontrib><creatorcontrib>Smilansky, Uzy</creatorcontrib><title>Spectral statistics of permutation matrices</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.</description><subject>Data smoothing</subject><subject>Eigenvalues</subject><subject>Integers</subject><subject>Mathematical functions</subject><subject>Mathematical lattices</subject><subject>Mathematical permutation</subject><subject>Matrices</subject><subject>Number theory</subject><subject>Spectral graph theory</subject><subject>Statistical variance</subject><issn>1364-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NDYz0TU1MI7gYOAqLs4yMDA0NDM14mTQDi5ITS4pSsxRKC5JLMksLslMLlbIT1MoSC3KLQWJ5Ocp5CaWFGUmpxbzMLCmJeYUp_JCaW4GWTfXEGcP3azikvyi-IKizNzEosp4IxNTA0NLSzNjQvIA8q4tKQ</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Oren, Idan</creator><creator>Smilansky, Uzy</creator><general>Royal Society</general><scope/></search><sort><creationdate>20140128</creationdate><title>Spectral statistics of permutation matrices</title><author>Oren, Idan ; Smilansky, Uzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_245019963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data smoothing</topic><topic>Eigenvalues</topic><topic>Integers</topic><topic>Mathematical functions</topic><topic>Mathematical lattices</topic><topic>Mathematical permutation</topic><topic>Matrices</topic><topic>Number theory</topic><topic>Spectral graph theory</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oren, Idan</creatorcontrib><creatorcontrib>Smilansky, Uzy</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oren, Idan</au><au>Smilansky, Uzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral statistics of permutation matrices</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2014-01-28</date><risdate>2014</risdate><volume>372</volume><issue>2007</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1364-503X</issn><abstract>We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.</abstract><pub>Royal Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2014-01, Vol.372 (2007), p.1-10
issn 1364-503X
language eng
recordid cdi_jstor_primary_24501996
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Data smoothing
Eigenvalues
Integers
Mathematical functions
Mathematical lattices
Mathematical permutation
Matrices
Number theory
Spectral graph theory
Statistical variance
title Spectral statistics of permutation matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20statistics%20of%20permutation%20matrices&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Oren,%20Idan&rft.date=2014-01-28&rft.volume=372&rft.issue=2007&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1364-503X&rft_id=info:doi/&rft_dat=%3Cjstor%3E24501996%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24501996&rfr_iscdi=true