THE WANG-LANDAU ALGORITHM IN GENERAL STATE SPACES: APPLICATIONS AND CONVERGENCE ANALYSIS
The Wang-Landau algorithm (Wang and Landau (2001)) is a recent Monte Carlo method that has generated much interest in the Physics literature due to some spectacular simulation performances. The objective of this paper is two-fold. First, we show that the algorithm can be naturally extended to more g...
Gespeichert in:
Veröffentlicht in: | Statistica Sinica 2010-01, Vol.20 (1), p.209-233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Wang-Landau algorithm (Wang and Landau (2001)) is a recent Monte Carlo method that has generated much interest in the Physics literature due to some spectacular simulation performances. The objective of this paper is two-fold. First, we show that the algorithm can be naturally extended to more general state spaces and used to improve on Markov Chain Monte Carlo schemes of more interest in Statistics. In a second part, we study asymptotic behaviors of the algorithm. We show that with an appropriate choice of the step-size, the algorithm is consistent and a strong law of large numbers holds under some fairly mild conditions. We have also shown by simulations the potential advantage of the WL algorithm for problems in Bayesian inference. |
---|---|
ISSN: | 1017-0405 1996-8507 |