MOST ROBUST BIBDs

Since the time of Fisher and Yates, intense combinatorial study of balanced incomplete block designs has led to a great many designs with the same numbers of treatments, blocks, and block size. While the basic analysis does not differentiate among different BIBDs with the same parameters, they do di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2008-04, Vol.18 (2), p.689-707
Hauptverfasser: Morgan, John P., Parvu, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 2
container_start_page 689
container_title Statistica Sinica
container_volume 18
creator Morgan, John P.
Parvu, Valentin
description Since the time of Fisher and Yates, intense combinatorial study of balanced incomplete block designs has led to a great many designs with the same numbers of treatments, blocks, and block size. While the basic analysis does not differentiate among different BIBDs with the same parameters, they do differ in their capacity to withstand loss of experimental material. Competing BIBDs are compared here for their robustness in terms of average loss and worst loss. A table of most robust BIBDs is compiled. Two useful criteria are minimum intersection aberration and minimum efficiency aberration.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24308502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24308502</jstor_id><sourcerecordid>24308502</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-afd369c81223694bc0c19f0b371011f21ce449b303ee8dc6929f8fb037a6bdc23</originalsourceid><addsrcrecordid>eNotzk0KwjAUBOAgChZ14QEELxB4yUubZGnrX0EpaLuWJm3AoihNN97egK6-Wc3MiERM64SqGOQ4ZGCSgoB4Shbe3w2AhpgpwIgsz8W1XF-KtAqkebr1czJx9cO3i78zUu13ZXakp-KQZ5sT7ZiUA61dg4m2inEeFMaCZdqBQRnWmOPMtkJog4BtqxqbaK6dcgZQ1olpLMcZWf16Oz-8-tu7vz_r_nPjAiHc5vgFX2Mxbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MOST ROBUST BIBDs</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Morgan, John P. ; Parvu, Valentin</creator><creatorcontrib>Morgan, John P. ; Parvu, Valentin</creatorcontrib><description>Since the time of Fisher and Yates, intense combinatorial study of balanced incomplete block designs has led to a great many designs with the same numbers of treatments, blocks, and block size. While the basic analysis does not differentiate among different BIBDs with the same parameters, they do differ in their capacity to withstand loss of experimental material. Competing BIBDs are compared here for their robustness in terms of average loss and worst loss. A table of most robust BIBDs is compiled. Two useful criteria are minimum intersection aberration and minimum efficiency aberration.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Arithmetic mean ; Design efficiency ; Eigenvalues ; Experiment design ; Information economics ; Mathematical robustness ; Matrices ; Missing data ; Statistical discrepancies ; Statistical variance</subject><ispartof>Statistica Sinica, 2008-04, Vol.18 (2), p.689-707</ispartof><rights>2008 STATISTICA SINICA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24308502$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24308502$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Morgan, John P.</creatorcontrib><creatorcontrib>Parvu, Valentin</creatorcontrib><title>MOST ROBUST BIBDs</title><title>Statistica Sinica</title><description>Since the time of Fisher and Yates, intense combinatorial study of balanced incomplete block designs has led to a great many designs with the same numbers of treatments, blocks, and block size. While the basic analysis does not differentiate among different BIBDs with the same parameters, they do differ in their capacity to withstand loss of experimental material. Competing BIBDs are compared here for their robustness in terms of average loss and worst loss. A table of most robust BIBDs is compiled. Two useful criteria are minimum intersection aberration and minimum efficiency aberration.</description><subject>Arithmetic mean</subject><subject>Design efficiency</subject><subject>Eigenvalues</subject><subject>Experiment design</subject><subject>Information economics</subject><subject>Mathematical robustness</subject><subject>Matrices</subject><subject>Missing data</subject><subject>Statistical discrepancies</subject><subject>Statistical variance</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzk0KwjAUBOAgChZ14QEELxB4yUubZGnrX0EpaLuWJm3AoihNN97egK6-Wc3MiERM64SqGOQ4ZGCSgoB4Shbe3w2AhpgpwIgsz8W1XF-KtAqkebr1czJx9cO3i78zUu13ZXakp-KQZ5sT7ZiUA61dg4m2inEeFMaCZdqBQRnWmOPMtkJog4BtqxqbaK6dcgZQ1olpLMcZWf16Oz-8-tu7vz_r_nPjAiHc5vgFX2Mxbg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Morgan, John P.</creator><creator>Parvu, Valentin</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope/></search><sort><creationdate>20080401</creationdate><title>MOST ROBUST BIBDs</title><author>Morgan, John P. ; Parvu, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-afd369c81223694bc0c19f0b371011f21ce449b303ee8dc6929f8fb037a6bdc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arithmetic mean</topic><topic>Design efficiency</topic><topic>Eigenvalues</topic><topic>Experiment design</topic><topic>Information economics</topic><topic>Mathematical robustness</topic><topic>Matrices</topic><topic>Missing data</topic><topic>Statistical discrepancies</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morgan, John P.</creatorcontrib><creatorcontrib>Parvu, Valentin</creatorcontrib><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morgan, John P.</au><au>Parvu, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOST ROBUST BIBDs</atitle><jtitle>Statistica Sinica</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>689</spage><epage>707</epage><pages>689-707</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>Since the time of Fisher and Yates, intense combinatorial study of balanced incomplete block designs has led to a great many designs with the same numbers of treatments, blocks, and block size. While the basic analysis does not differentiate among different BIBDs with the same parameters, they do differ in their capacity to withstand loss of experimental material. Competing BIBDs are compared here for their robustness in terms of average loss and worst loss. A table of most robust BIBDs is compiled. Two useful criteria are minimum intersection aberration and minimum efficiency aberration.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2008-04, Vol.18 (2), p.689-707
issn 1017-0405
1996-8507
language eng
recordid cdi_jstor_primary_24308502
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Arithmetic mean
Design efficiency
Eigenvalues
Experiment design
Information economics
Mathematical robustness
Matrices
Missing data
Statistical discrepancies
Statistical variance
title MOST ROBUST BIBDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOST%20ROBUST%20BIBDs&rft.jtitle=Statistica%20Sinica&rft.au=Morgan,%20John%20P.&rft.date=2008-04-01&rft.volume=18&rft.issue=2&rft.spage=689&rft.epage=707&rft.pages=689-707&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/&rft_dat=%3Cjstor%3E24308502%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24308502&rfr_iscdi=true