ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS
A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In...
Gespeichert in:
Veröffentlicht in: | Statistica Sinica 2008-01, Vol.18 (1), p.171-186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Statistica Sinica |
container_volume | 18 |
creator | Joseph, V. Roshan Hung, Ying |
description | A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24308251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24308251</jstor_id><sourcerecordid>24308251</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-8573bcc6434a78369ab188e457504ebe48cf9fb1374801002c6e4a705192b9b33</originalsourceid><addsrcrecordid>eNotTssKgkAUHaKgqD4haB0Id7wzzszSzFTwEalQq3BkhKIotE1_30BtzjmL8xqRGVXKcyQHMbYaqHCAAZ-S5TBcNYACTiXgjGyKYxUXUZH7qZP5pyRL8nXqVxbj8yE8BvU2XO_CMonyckEmXXMfzPLPc1LvwyqInbSIksDmb1SIt90UqNvWY8gaIdFTjaZSGsYFB2a0YbLtVKcpCiaBAritZ6zTHlKuVhpxTla_3tvwfvaXV399NP3n4jIE6XKKX3stN40</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</title><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Joseph, V. Roshan ; Hung, Ying</creator><creatorcontrib>Joseph, V. Roshan ; Hung, Ying</creatorcontrib><description>A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Algorithms ; Correlations ; Experiment design ; Integers ; Kriging ; Mathematical sequences ; Maximin ; Modeling ; Objective functions ; Performance metrics</subject><ispartof>Statistica Sinica, 2008-01, Vol.18 (1), p.171-186</ispartof><rights>2008 STATISTICA SINICA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24308251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24308251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Joseph, V. Roshan</creatorcontrib><creatorcontrib>Hung, Ying</creatorcontrib><title>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</title><title>Statistica Sinica</title><description>A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.</description><subject>Algorithms</subject><subject>Correlations</subject><subject>Experiment design</subject><subject>Integers</subject><subject>Kriging</subject><subject>Mathematical sequences</subject><subject>Maximin</subject><subject>Modeling</subject><subject>Objective functions</subject><subject>Performance metrics</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotTssKgkAUHaKgqD4haB0Id7wzzszSzFTwEalQq3BkhKIotE1_30BtzjmL8xqRGVXKcyQHMbYaqHCAAZ-S5TBcNYACTiXgjGyKYxUXUZH7qZP5pyRL8nXqVxbj8yE8BvU2XO_CMonyckEmXXMfzPLPc1LvwyqInbSIksDmb1SIt90UqNvWY8gaIdFTjaZSGsYFB2a0YbLtVKcpCiaBAritZ6zTHlKuVhpxTla_3tvwfvaXV399NP3n4jIE6XKKX3stN40</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Joseph, V. Roshan</creator><creator>Hung, Ying</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope/></search><sort><creationdate>20080101</creationdate><title>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</title><author>Joseph, V. Roshan ; Hung, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-8573bcc6434a78369ab188e457504ebe48cf9fb1374801002c6e4a705192b9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Correlations</topic><topic>Experiment design</topic><topic>Integers</topic><topic>Kriging</topic><topic>Mathematical sequences</topic><topic>Maximin</topic><topic>Modeling</topic><topic>Objective functions</topic><topic>Performance metrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, V. Roshan</creatorcontrib><creatorcontrib>Hung, Ying</creatorcontrib><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, V. Roshan</au><au>Hung, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</atitle><jtitle>Statistica Sinica</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>18</volume><issue>1</issue><spage>171</spage><epage>186</epage><pages>171-186</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-0405 |
ispartof | Statistica Sinica, 2008-01, Vol.18 (1), p.171-186 |
issn | 1017-0405 1996-8507 |
language | eng |
recordid | cdi_jstor_primary_24308251 |
source | JSTOR; EZB Electronic Journals Library |
subjects | Algorithms Correlations Experiment design Integers Kriging Mathematical sequences Maximin Modeling Objective functions Performance metrics |
title | ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ORTHOGONAL-MAXIMIN%20LATIN%20HYPERCUBE%20DESIGNS&rft.jtitle=Statistica%20Sinica&rft.au=Joseph,%20V.%20Roshan&rft.date=2008-01-01&rft.volume=18&rft.issue=1&rft.spage=171&rft.epage=186&rft.pages=171-186&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/&rft_dat=%3Cjstor%3E24308251%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24308251&rfr_iscdi=true |