ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS

A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Sinica 2008-01, Vol.18 (1), p.171-186
Hauptverfasser: Joseph, V. Roshan, Hung, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 171
container_title Statistica Sinica
container_volume 18
creator Joseph, V. Roshan
Hung, Ying
description A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24308251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24308251</jstor_id><sourcerecordid>24308251</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-8573bcc6434a78369ab188e457504ebe48cf9fb1374801002c6e4a705192b9b33</originalsourceid><addsrcrecordid>eNotTssKgkAUHaKgqD4haB0Id7wzzszSzFTwEalQq3BkhKIotE1_30BtzjmL8xqRGVXKcyQHMbYaqHCAAZ-S5TBcNYACTiXgjGyKYxUXUZH7qZP5pyRL8nXqVxbj8yE8BvU2XO_CMonyckEmXXMfzPLPc1LvwyqInbSIksDmb1SIt90UqNvWY8gaIdFTjaZSGsYFB2a0YbLtVKcpCiaBAritZ6zTHlKuVhpxTla_3tvwfvaXV399NP3n4jIE6XKKX3stN40</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</title><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Joseph, V. Roshan ; Hung, Ying</creator><creatorcontrib>Joseph, V. Roshan ; Hung, Ying</creatorcontrib><description>A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Algorithms ; Correlations ; Experiment design ; Integers ; Kriging ; Mathematical sequences ; Maximin ; Modeling ; Objective functions ; Performance metrics</subject><ispartof>Statistica Sinica, 2008-01, Vol.18 (1), p.171-186</ispartof><rights>2008 STATISTICA SINICA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24308251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24308251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Joseph, V. Roshan</creatorcontrib><creatorcontrib>Hung, Ying</creatorcontrib><title>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</title><title>Statistica Sinica</title><description>A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.</description><subject>Algorithms</subject><subject>Correlations</subject><subject>Experiment design</subject><subject>Integers</subject><subject>Kriging</subject><subject>Mathematical sequences</subject><subject>Maximin</subject><subject>Modeling</subject><subject>Objective functions</subject><subject>Performance metrics</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotTssKgkAUHaKgqD4haB0Id7wzzszSzFTwEalQq3BkhKIotE1_30BtzjmL8xqRGVXKcyQHMbYaqHCAAZ-S5TBcNYACTiXgjGyKYxUXUZH7qZP5pyRL8nXqVxbj8yE8BvU2XO_CMonyckEmXXMfzPLPc1LvwyqInbSIksDmb1SIt90UqNvWY8gaIdFTjaZSGsYFB2a0YbLtVKcpCiaBAritZ6zTHlKuVhpxTla_3tvwfvaXV399NP3n4jIE6XKKX3stN40</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Joseph, V. Roshan</creator><creator>Hung, Ying</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope/></search><sort><creationdate>20080101</creationdate><title>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</title><author>Joseph, V. Roshan ; Hung, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-8573bcc6434a78369ab188e457504ebe48cf9fb1374801002c6e4a705192b9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Correlations</topic><topic>Experiment design</topic><topic>Integers</topic><topic>Kriging</topic><topic>Mathematical sequences</topic><topic>Maximin</topic><topic>Modeling</topic><topic>Objective functions</topic><topic>Performance metrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, V. Roshan</creatorcontrib><creatorcontrib>Hung, Ying</creatorcontrib><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, V. Roshan</au><au>Hung, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS</atitle><jtitle>Statistica Sinica</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>18</volume><issue>1</issue><spage>171</spage><epage>186</epage><pages>171-186</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>A randomly generated Latin hypercube design (LHD) can be quite structured: the variables may be highly correlated or the design may not have good space-filling properties. There are procedures for finding good LHDs by minimizing the pairwise correlations or by maximizing the inter-site distances. In this article we show that these two criteria need not be in close agreement. We propose a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures. We also propose a new exchange algorithm for efficiently generating such designs. Several examples are presented to show that the new algorithm is fast, and that the optimal designs are good in terms of both the correlation and distance criteria.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2008-01, Vol.18 (1), p.171-186
issn 1017-0405
1996-8507
language eng
recordid cdi_jstor_primary_24308251
source JSTOR; EZB Electronic Journals Library
subjects Algorithms
Correlations
Experiment design
Integers
Kriging
Mathematical sequences
Maximin
Modeling
Objective functions
Performance metrics
title ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ORTHOGONAL-MAXIMIN%20LATIN%20HYPERCUBE%20DESIGNS&rft.jtitle=Statistica%20Sinica&rft.au=Joseph,%20V.%20Roshan&rft.date=2008-01-01&rft.volume=18&rft.issue=1&rft.spage=171&rft.epage=186&rft.pages=171-186&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/&rft_dat=%3Cjstor%3E24308251%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24308251&rfr_iscdi=true