Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well

This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer music journal 2014-12, Vol.38 (4), p.53-67
Hauptverfasser: Cádiz, Rodrigo F., Ramos, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 4
container_start_page 53
container_title Computer music journal
container_volume 38
creator Cádiz, Rodrigo F.
Ramos, Javier
description This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.
doi_str_mv 10.1162/COMJ_a_00268
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_24265449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24265449</jstor_id><sourcerecordid>24265449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOKc3r0LAiwerSfqSNkcZOicTlSkeQ9qmmLGmmjQH_3szJk7E04PHx-_93ofQMSUXlAp2OXm4v1NaEcJEuYNGlOc041TIXTQiFMpMMlHso4MQloQQkXMxQrNFH12DF59ueDPBBty3WOOpjiFY7fBT1G6IHX7UfrD1ymDrcFrPXGudHQxefETtDX41q9Uh2mv1Kpij7zlGLzfXz5PbbP4wnU2u5lmdSzFkLW80NWVtdA5l01Y1rWjNBCkI562smkoCFYQRXYHQFAqti8qwoiplCWk0-RidbXLfff8RTRhUZ0OdCmhn-hgUFSI9R1lBEnr6B1320bvULlHAJQcJa-p8Q9W-D8GbVr1722n_qShRa6_qt9eEw0_o0tRDF4PZ5nIBjAu1WLtfq6cAyTXk29qd_V3j_wsnG3QZht7_tGHABAeQ-Rc-UJB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645954940</pqid></control><display><type>article</type><title>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</title><source>Jstor Complete Legacy</source><creator>Cádiz, Rodrigo F. ; Ramos, Javier</creator><creatorcontrib>Cádiz, Rodrigo F. ; Ramos, Javier</creatorcontrib><description>This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.</description><identifier>ISSN: 0148-9267</identifier><identifier>EISSN: 1531-5169</identifier><identifier>DOI: 10.1162/COMJ_a_00268</identifier><identifier>CODEN: CMUJDY</identifier><language>eng</language><publisher>One Rogers St., Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Acoustic data ; Algorithms ; Audio frequencies ; Bouncing ; Computer music ; Digital Sound Synthesis ; Dynamics ; Eigenvalues ; Gaussian ; Mathematical models ; Momentum ; Oscillators ; Quantum mechanics ; Sound ; Square wells ; Synthesis ; Synthesizers ; Uncertainty ; Wave functions ; Wave packets</subject><ispartof>Computer music journal, 2014-12, Vol.38 (4), p.53-67</ispartof><rights>2014 Massachusetts Institute of Technology</rights><rights>Copyright © Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals Winter 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</citedby><cites>FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24265449$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24265449$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Cádiz, Rodrigo F.</creatorcontrib><creatorcontrib>Ramos, Javier</creatorcontrib><title>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</title><title>Computer music journal</title><description>This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.</description><subject>Acoustic data</subject><subject>Algorithms</subject><subject>Audio frequencies</subject><subject>Bouncing</subject><subject>Computer music</subject><subject>Digital Sound Synthesis</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Gaussian</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Oscillators</subject><subject>Quantum mechanics</subject><subject>Sound</subject><subject>Square wells</subject><subject>Synthesis</subject><subject>Synthesizers</subject><subject>Uncertainty</subject><subject>Wave functions</subject><subject>Wave packets</subject><issn>0148-9267</issn><issn>1531-5169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOKc3r0LAiwerSfqSNkcZOicTlSkeQ9qmmLGmmjQH_3szJk7E04PHx-_93ofQMSUXlAp2OXm4v1NaEcJEuYNGlOc041TIXTQiFMpMMlHso4MQloQQkXMxQrNFH12DF59ueDPBBty3WOOpjiFY7fBT1G6IHX7UfrD1ymDrcFrPXGudHQxefETtDX41q9Uh2mv1Kpij7zlGLzfXz5PbbP4wnU2u5lmdSzFkLW80NWVtdA5l01Y1rWjNBCkI562smkoCFYQRXYHQFAqti8qwoiplCWk0-RidbXLfff8RTRhUZ0OdCmhn-hgUFSI9R1lBEnr6B1320bvULlHAJQcJa-p8Q9W-D8GbVr1722n_qShRa6_qt9eEw0_o0tRDF4PZ5nIBjAu1WLtfq6cAyTXk29qd_V3j_wsnG3QZht7_tGHABAeQ-Rc-UJB8</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Cádiz, Rodrigo F.</creator><creator>Ramos, Javier</creator><general>MIT Press</general><general>The MIT Press</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope></search><sort><creationdate>20141201</creationdate><title>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</title><author>Cádiz, Rodrigo F. ; Ramos, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustic data</topic><topic>Algorithms</topic><topic>Audio frequencies</topic><topic>Bouncing</topic><topic>Computer music</topic><topic>Digital Sound Synthesis</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Gaussian</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Oscillators</topic><topic>Quantum mechanics</topic><topic>Sound</topic><topic>Square wells</topic><topic>Synthesis</topic><topic>Synthesizers</topic><topic>Uncertainty</topic><topic>Wave functions</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cádiz, Rodrigo F.</creatorcontrib><creatorcontrib>Ramos, Javier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Computer music journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cádiz, Rodrigo F.</au><au>Ramos, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</atitle><jtitle>Computer music journal</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>38</volume><issue>4</issue><spage>53</spage><epage>67</epage><pages>53-67</pages><issn>0148-9267</issn><eissn>1531-5169</eissn><coden>CMUJDY</coden><abstract>This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.</abstract><cop>One Rogers St., Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/COMJ_a_00268</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-9267
ispartof Computer music journal, 2014-12, Vol.38 (4), p.53-67
issn 0148-9267
1531-5169
language eng
recordid cdi_jstor_primary_24265449
source Jstor Complete Legacy
subjects Acoustic data
Algorithms
Audio frequencies
Bouncing
Computer music
Digital Sound Synthesis
Dynamics
Eigenvalues
Gaussian
Mathematical models
Momentum
Oscillators
Quantum mechanics
Sound
Square wells
Synthesis
Synthesizers
Uncertainty
Wave functions
Wave packets
title Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20Synthesis%20of%20a%20Gaussian%20Quantum%20Particle%20in%20an%20Infinite%20Square%20Well&rft.jtitle=Computer%20music%20journal&rft.au=C%C3%A1diz,%20Rodrigo%20F.&rft.date=2014-12-01&rft.volume=38&rft.issue=4&rft.spage=53&rft.epage=67&rft.pages=53-67&rft.issn=0148-9267&rft.eissn=1531-5169&rft.coden=CMUJDY&rft_id=info:doi/10.1162/COMJ_a_00268&rft_dat=%3Cjstor_cross%3E24265449%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645954940&rft_id=info:pmid/&rft_jstor_id=24265449&rfr_iscdi=true