Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well
This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular ca...
Gespeichert in:
Veröffentlicht in: | Computer music journal 2014-12, Vol.38 (4), p.53-67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 4 |
container_start_page | 53 |
container_title | Computer music journal |
container_volume | 38 |
creator | Cádiz, Rodrigo F. Ramos, Javier |
description | This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view. |
doi_str_mv | 10.1162/COMJ_a_00268 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_24265449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24265449</jstor_id><sourcerecordid>24265449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOKc3r0LAiwerSfqSNkcZOicTlSkeQ9qmmLGmmjQH_3szJk7E04PHx-_93ofQMSUXlAp2OXm4v1NaEcJEuYNGlOc041TIXTQiFMpMMlHso4MQloQQkXMxQrNFH12DF59ueDPBBty3WOOpjiFY7fBT1G6IHX7UfrD1ymDrcFrPXGudHQxefETtDX41q9Uh2mv1Kpij7zlGLzfXz5PbbP4wnU2u5lmdSzFkLW80NWVtdA5l01Y1rWjNBCkI562smkoCFYQRXYHQFAqti8qwoiplCWk0-RidbXLfff8RTRhUZ0OdCmhn-hgUFSI9R1lBEnr6B1320bvULlHAJQcJa-p8Q9W-D8GbVr1722n_qShRa6_qt9eEw0_o0tRDF4PZ5nIBjAu1WLtfq6cAyTXk29qd_V3j_wsnG3QZht7_tGHABAeQ-Rc-UJB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645954940</pqid></control><display><type>article</type><title>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</title><source>Jstor Complete Legacy</source><creator>Cádiz, Rodrigo F. ; Ramos, Javier</creator><creatorcontrib>Cádiz, Rodrigo F. ; Ramos, Javier</creatorcontrib><description>This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.</description><identifier>ISSN: 0148-9267</identifier><identifier>EISSN: 1531-5169</identifier><identifier>DOI: 10.1162/COMJ_a_00268</identifier><identifier>CODEN: CMUJDY</identifier><language>eng</language><publisher>One Rogers St., Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Acoustic data ; Algorithms ; Audio frequencies ; Bouncing ; Computer music ; Digital Sound Synthesis ; Dynamics ; Eigenvalues ; Gaussian ; Mathematical models ; Momentum ; Oscillators ; Quantum mechanics ; Sound ; Square wells ; Synthesis ; Synthesizers ; Uncertainty ; Wave functions ; Wave packets</subject><ispartof>Computer music journal, 2014-12, Vol.38 (4), p.53-67</ispartof><rights>2014 Massachusetts Institute of Technology</rights><rights>Copyright © Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals Winter 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</citedby><cites>FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24265449$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24265449$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Cádiz, Rodrigo F.</creatorcontrib><creatorcontrib>Ramos, Javier</creatorcontrib><title>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</title><title>Computer music journal</title><description>This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.</description><subject>Acoustic data</subject><subject>Algorithms</subject><subject>Audio frequencies</subject><subject>Bouncing</subject><subject>Computer music</subject><subject>Digital Sound Synthesis</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Gaussian</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Oscillators</subject><subject>Quantum mechanics</subject><subject>Sound</subject><subject>Square wells</subject><subject>Synthesis</subject><subject>Synthesizers</subject><subject>Uncertainty</subject><subject>Wave functions</subject><subject>Wave packets</subject><issn>0148-9267</issn><issn>1531-5169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOKc3r0LAiwerSfqSNkcZOicTlSkeQ9qmmLGmmjQH_3szJk7E04PHx-_93ofQMSUXlAp2OXm4v1NaEcJEuYNGlOc041TIXTQiFMpMMlHso4MQloQQkXMxQrNFH12DF59ueDPBBty3WOOpjiFY7fBT1G6IHX7UfrD1ymDrcFrPXGudHQxefETtDX41q9Uh2mv1Kpij7zlGLzfXz5PbbP4wnU2u5lmdSzFkLW80NWVtdA5l01Y1rWjNBCkI562smkoCFYQRXYHQFAqti8qwoiplCWk0-RidbXLfff8RTRhUZ0OdCmhn-hgUFSI9R1lBEnr6B1320bvULlHAJQcJa-p8Q9W-D8GbVr1722n_qShRa6_qt9eEw0_o0tRDF4PZ5nIBjAu1WLtfq6cAyTXk29qd_V3j_wsnG3QZht7_tGHABAeQ-Rc-UJB8</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Cádiz, Rodrigo F.</creator><creator>Ramos, Javier</creator><general>MIT Press</general><general>The MIT Press</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope></search><sort><creationdate>20141201</creationdate><title>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</title><author>Cádiz, Rodrigo F. ; Ramos, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f5da1e8cea348dfbc1b1c2607055f9bdb9416020ab46a147aa7be27b898427bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustic data</topic><topic>Algorithms</topic><topic>Audio frequencies</topic><topic>Bouncing</topic><topic>Computer music</topic><topic>Digital Sound Synthesis</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Gaussian</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Oscillators</topic><topic>Quantum mechanics</topic><topic>Sound</topic><topic>Square wells</topic><topic>Synthesis</topic><topic>Synthesizers</topic><topic>Uncertainty</topic><topic>Wave functions</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cádiz, Rodrigo F.</creatorcontrib><creatorcontrib>Ramos, Javier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Computer music journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cádiz, Rodrigo F.</au><au>Ramos, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well</atitle><jtitle>Computer music journal</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>38</volume><issue>4</issue><spage>53</spage><epage>67</epage><pages>53-67</pages><issn>0148-9267</issn><eissn>1531-5169</eissn><coden>CMUJDY</coden><abstract>This article describes a synthesis technique based on the sonification of the dynamic behavior of a quantum particle enclosed in an infinite square well. More specifically, we sonify the momentum distribution of a one-dimensional Gaussian bouncing wave packet model. We have chosen this particular case because of its relative simplicity and interesting dynamic behavior, which makes it suitable for a novel sonification mapping that can be applied to standard synthesis techniques, resulting in the generation of appealing sounds. In addition, this sonification might provide useful insight into the behavior of the quantum particle. In particular, this model exhibits quantum revivals, minimizes uncertainty, and exhibits similarities to the case of a classical bouncing ball. The proposed model has been implemented in real time in both the Max/MSP and the Pure Data environments. The algorithm is based on concepts of additive synthesis where each oscillator describes the eigenfunctions that characterize the state evolution of the wave packet. We also provide an analysis of the sounds produced by the model from both a physical and a perceptual point of view.</abstract><cop>One Rogers St., Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/COMJ_a_00268</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-9267 |
ispartof | Computer music journal, 2014-12, Vol.38 (4), p.53-67 |
issn | 0148-9267 1531-5169 |
language | eng |
recordid | cdi_jstor_primary_24265449 |
source | Jstor Complete Legacy |
subjects | Acoustic data Algorithms Audio frequencies Bouncing Computer music Digital Sound Synthesis Dynamics Eigenvalues Gaussian Mathematical models Momentum Oscillators Quantum mechanics Sound Square wells Synthesis Synthesizers Uncertainty Wave functions Wave packets |
title | Sound Synthesis of a Gaussian Quantum Particle in an Infinite Square Well |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20Synthesis%20of%20a%20Gaussian%20Quantum%20Particle%20in%20an%20Infinite%20Square%20Well&rft.jtitle=Computer%20music%20journal&rft.au=C%C3%A1diz,%20Rodrigo%20F.&rft.date=2014-12-01&rft.volume=38&rft.issue=4&rft.spage=53&rft.epage=67&rft.pages=53-67&rft.issn=0148-9267&rft.eissn=1531-5169&rft.coden=CMUJDY&rft_id=info:doi/10.1162/COMJ_a_00268&rft_dat=%3Cjstor_cross%3E24265449%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645954940&rft_id=info:pmid/&rft_jstor_id=24265449&rfr_iscdi=true |