Cure Rate Quantile Regression for Censored Data With a Survival Fraction

Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2013-12, Vol.108 (504), p.1517-1531
Hauptverfasser: Wu, Yuanshan, Yin, Guosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1531
container_issue 504
container_start_page 1517
container_title Journal of the American Statistical Association
container_volume 108
creator Wu, Yuanshan
Yin, Guosheng
description Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.
doi_str_mv 10.1080/01621459.2013.837368
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_24247079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24247079</jstor_id><sourcerecordid>24247079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-d078eb45e4d17d5dd980cb857bb181298f5b768d80456517399e8a76172cf7013</originalsourceid><addsrcrecordid>eNqFkVFLwzAUhYsoOKf_QDHgc2fSJk36JDKdEwTROfQtpE06O7pm3qST_XszquKbebkJ95x7yHej6JTgEcECX2KSJYSyfJRgko5EytNM7EUDwlIeJ5y-7f-5H0ZHzi1xOFyIQTQdd2DQs_IGPXWq9XUTXmYBxrnatqiygMamdRaMRjfKK_Ra-3ek0KyDTb1RDZqAKn2QHkcHlWqcOfmuw2g-uX0ZT-OHx7v78fVDXFJCfaxDrCkoM1QTrpnWucBlIRgvCiJIkouKFTwTWmDKMkZ4mudGKJ4RnpQVD98bRhf93DXYj844L5e2gzZESpLxPMcJYTyoaK8qwToHppJrqFcKtpJguWMmf5jJHTPZMwu2s962dN7CryehCeWY56F_1ffrNpBZqU8LjZZebRsLFai2rJ1M_0k47ydUykq1gGCYz4IgCwsRjAXFF_qng44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679902157</pqid></control><display><type>article</type><title>Cure Rate Quantile Regression for Censored Data With a Survival Fraction</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Access via Taylor &amp; Francis</source><creator>Wu, Yuanshan ; Yin, Guosheng</creator><creatorcontrib>Wu, Yuanshan ; Yin, Guosheng</creatorcontrib><description>Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2013.837368</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis Group</publisher><subject>Adultery ; Bone marrow ; bone marrow transplant ; Convergence ; Cure rate model ; data analysis ; Empirical process ; equations ; Long-term survivor ; Martingale ; patients ; Random censoring ; Regression analysis ; Regression quantile ; Simulation ; Statistics ; Survival analysis ; Theory and Methods ; Transplants &amp; implants ; Volterra integral equation</subject><ispartof>Journal of the American Statistical Association, 2013-12, Vol.108 (504), p.1517-1531</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>copyright © 2013 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-d078eb45e4d17d5dd980cb857bb181298f5b768d80456517399e8a76172cf7013</citedby><cites>FETCH-LOGICAL-c414t-d078eb45e4d17d5dd980cb857bb181298f5b768d80456517399e8a76172cf7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24247079$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24247079$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids></links><search><creatorcontrib>Wu, Yuanshan</creatorcontrib><creatorcontrib>Yin, Guosheng</creatorcontrib><title>Cure Rate Quantile Regression for Censored Data With a Survival Fraction</title><title>Journal of the American Statistical Association</title><description>Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.</description><subject>Adultery</subject><subject>Bone marrow</subject><subject>bone marrow transplant</subject><subject>Convergence</subject><subject>Cure rate model</subject><subject>data analysis</subject><subject>Empirical process</subject><subject>equations</subject><subject>Long-term survivor</subject><subject>Martingale</subject><subject>patients</subject><subject>Random censoring</subject><subject>Regression analysis</subject><subject>Regression quantile</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Survival analysis</subject><subject>Theory and Methods</subject><subject>Transplants &amp; implants</subject><subject>Volterra integral equation</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkVFLwzAUhYsoOKf_QDHgc2fSJk36JDKdEwTROfQtpE06O7pm3qST_XszquKbebkJ95x7yHej6JTgEcECX2KSJYSyfJRgko5EytNM7EUDwlIeJ5y-7f-5H0ZHzi1xOFyIQTQdd2DQs_IGPXWq9XUTXmYBxrnatqiygMamdRaMRjfKK_Ra-3ek0KyDTb1RDZqAKn2QHkcHlWqcOfmuw2g-uX0ZT-OHx7v78fVDXFJCfaxDrCkoM1QTrpnWucBlIRgvCiJIkouKFTwTWmDKMkZ4mudGKJ4RnpQVD98bRhf93DXYj844L5e2gzZESpLxPMcJYTyoaK8qwToHppJrqFcKtpJguWMmf5jJHTPZMwu2s962dN7CryehCeWY56F_1ffrNpBZqU8LjZZebRsLFai2rJ1M_0k47ydUykq1gGCYz4IgCwsRjAXFF_qng44</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wu, Yuanshan</creator><creator>Yin, Guosheng</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20131201</creationdate><title>Cure Rate Quantile Regression for Censored Data With a Survival Fraction</title><author>Wu, Yuanshan ; Yin, Guosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-d078eb45e4d17d5dd980cb857bb181298f5b768d80456517399e8a76172cf7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adultery</topic><topic>Bone marrow</topic><topic>bone marrow transplant</topic><topic>Convergence</topic><topic>Cure rate model</topic><topic>data analysis</topic><topic>Empirical process</topic><topic>equations</topic><topic>Long-term survivor</topic><topic>Martingale</topic><topic>patients</topic><topic>Random censoring</topic><topic>Regression analysis</topic><topic>Regression quantile</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Survival analysis</topic><topic>Theory and Methods</topic><topic>Transplants &amp; implants</topic><topic>Volterra integral equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuanshan</creatorcontrib><creatorcontrib>Yin, Guosheng</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuanshan</au><au>Yin, Guosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cure Rate Quantile Regression for Censored Data With a Survival Fraction</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>108</volume><issue>504</issue><spage>1517</spage><epage>1531</epage><pages>1517-1531</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.2013.837368</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-274X
ispartof Journal of the American Statistical Association, 2013-12, Vol.108 (504), p.1517-1531
issn 1537-274X
0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_24247079
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Access via Taylor & Francis
subjects Adultery
Bone marrow
bone marrow transplant
Convergence
Cure rate model
data analysis
Empirical process
equations
Long-term survivor
Martingale
patients
Random censoring
Regression analysis
Regression quantile
Simulation
Statistics
Survival analysis
Theory and Methods
Transplants & implants
Volterra integral equation
title Cure Rate Quantile Regression for Censored Data With a Survival Fraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cure%20Rate%20Quantile%20Regression%20for%20Censored%20Data%20With%20a%20Survival%20Fraction&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Wu,%20Yuanshan&rft.date=2013-12-01&rft.volume=108&rft.issue=504&rft.spage=1517&rft.epage=1531&rft.pages=1517-1531&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2013.837368&rft_dat=%3Cjstor_proqu%3E24247079%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1679902157&rft_id=info:pmid/&rft_jstor_id=24247079&rfr_iscdi=true