Heat Production in Non-Myelinated Nerves

Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B, Biological sciences Biological sciences, 1975-06, Vol.270 (908), p.425-432
1. Verfasser: Howarth, J. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 908
container_start_page 425
container_title Philosophical transactions of the Royal Society of London. Series B, Biological sciences
container_volume 270
creator Howarth, J. V.
description Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.
doi_str_mv 10.1098/rstb.1975.0020
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_2417341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2417341</jstor_id><sourcerecordid>2417341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</originalsourceid><addsrcrecordid>eNp9UE1PFDEYboxfK3r15GFPhMssb7-27cVECYoJolE8NzOdjnQzOx3aDmT99bYOETjAqXnzfPV5EHqLYYVBycMQU7PCSvAVAIEnaIGZwBVRAp6iBag1qSSj65foVYwbAFBcsBfoOaGSULVABye2TsvvwbeTSc4PSzcsz_xQfd3Z3g11su3yzIYrG1-jZ13dR_vm5t1Dvz4dnx-dVKffPn85-nBaGc55qlhHmOgkUxY3nVCkxlxwbBopm9a0uIZOMaaMFB3GBoTk1grTGAJK1EBNQ_fQ_uw7Bn852Zj01kVj-74erJ-ilkRhKiXPxNVMNMHHGGynx-C2ddhpDLoso8syuiyjyzJZ8O7GeWq2tv1Pn6fIMJ3h4He5oDfOpp3e-CkM-XzY9PIx1Y-f5x-xWqsrIsApkBokxcCwYET_ceM_t4LrjGsX42R1Yd0PebDIJiYfbntkW8pwhg9n-ML9vrh2wep7f8vHmO1KYIlipEz5_lFFiTd-SHZId3W6m_pej21H_wKSksSt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>82913885</pqid></control><display><type>article</type><title>Heat Production in Non-Myelinated Nerves</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Howarth, J. V.</creator><creatorcontrib>Howarth, J. V.</creatorcontrib><description>Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.</description><identifier>ISSN: 0962-8436</identifier><identifier>ISSN: 0080-4622</identifier><identifier>EISSN: 1471-2970</identifier><identifier>EISSN: 2054-0280</identifier><identifier>DOI: 10.1098/rstb.1975.0020</identifier><identifier>PMID: 238239</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Action Potentials ; Animals ; Capacitance ; Dielectric materials ; Electrophysiology ; Energy ; Entropy ; Heat ; Hot Temperature ; Models, Neurological ; Nerves ; Rabbits ; Thermodynamics ; Thermogenesis ; Thermopiles ; Time Factors ; Unmyelinated nerve fibers ; Vagus Nerve - physiology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1975-06, Vol.270 (908), p.425-432</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</citedby><cites>FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2417341$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2417341$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/238239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howarth, J. V.</creatorcontrib><title>Heat Production in Non-Myelinated Nerves</title><title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Capacitance</subject><subject>Dielectric materials</subject><subject>Electrophysiology</subject><subject>Energy</subject><subject>Entropy</subject><subject>Heat</subject><subject>Hot Temperature</subject><subject>Models, Neurological</subject><subject>Nerves</subject><subject>Rabbits</subject><subject>Thermodynamics</subject><subject>Thermogenesis</subject><subject>Thermopiles</subject><subject>Time Factors</subject><subject>Unmyelinated nerve fibers</subject><subject>Vagus Nerve - physiology</subject><issn>0962-8436</issn><issn>0080-4622</issn><issn>1471-2970</issn><issn>2054-0280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UE1PFDEYboxfK3r15GFPhMssb7-27cVECYoJolE8NzOdjnQzOx3aDmT99bYOETjAqXnzfPV5EHqLYYVBycMQU7PCSvAVAIEnaIGZwBVRAp6iBag1qSSj65foVYwbAFBcsBfoOaGSULVABye2TsvvwbeTSc4PSzcsz_xQfd3Z3g11su3yzIYrG1-jZ13dR_vm5t1Dvz4dnx-dVKffPn85-nBaGc55qlhHmOgkUxY3nVCkxlxwbBopm9a0uIZOMaaMFB3GBoTk1grTGAJK1EBNQ_fQ_uw7Bn852Zj01kVj-74erJ-ilkRhKiXPxNVMNMHHGGynx-C2ddhpDLoso8syuiyjyzJZ8O7GeWq2tv1Pn6fIMJ3h4He5oDfOpp3e-CkM-XzY9PIx1Y-f5x-xWqsrIsApkBokxcCwYET_ceM_t4LrjGsX42R1Yd0PebDIJiYfbntkW8pwhg9n-ML9vrh2wep7f8vHmO1KYIlipEz5_lFFiTd-SHZId3W6m_pej21H_wKSksSt</recordid><startdate>19750610</startdate><enddate>19750610</enddate><creator>Howarth, J. V.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19750610</creationdate><title>Heat Production in Non-Myelinated Nerves</title><author>Howarth, J. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Capacitance</topic><topic>Dielectric materials</topic><topic>Electrophysiology</topic><topic>Energy</topic><topic>Entropy</topic><topic>Heat</topic><topic>Hot Temperature</topic><topic>Models, Neurological</topic><topic>Nerves</topic><topic>Rabbits</topic><topic>Thermodynamics</topic><topic>Thermogenesis</topic><topic>Thermopiles</topic><topic>Time Factors</topic><topic>Unmyelinated nerve fibers</topic><topic>Vagus Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howarth, J. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howarth, J. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Production in Non-Myelinated Nerves</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>1975-06-10</date><risdate>1975</risdate><volume>270</volume><issue>908</issue><spage>425</spage><epage>432</epage><pages>425-432</pages><issn>0962-8436</issn><issn>0080-4622</issn><eissn>1471-2970</eissn><eissn>2054-0280</eissn><abstract>Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>238239</pmid><doi>10.1098/rstb.1975.0020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1975-06, Vol.270 (908), p.425-432
issn 0962-8436
0080-4622
1471-2970
2054-0280
language eng
recordid cdi_jstor_primary_2417341
source MEDLINE; JSTOR Archive Collection A-Z Listing
subjects Action Potentials
Animals
Capacitance
Dielectric materials
Electrophysiology
Energy
Entropy
Heat
Hot Temperature
Models, Neurological
Nerves
Rabbits
Thermodynamics
Thermogenesis
Thermopiles
Time Factors
Unmyelinated nerve fibers
Vagus Nerve - physiology
title Heat Production in Non-Myelinated Nerves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Production%20in%20Non-Myelinated%20Nerves&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B,%20Biological%20sciences&rft.au=Howarth,%20J.%20V.&rft.date=1975-06-10&rft.volume=270&rft.issue=908&rft.spage=425&rft.epage=432&rft.pages=425-432&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1975.0020&rft_dat=%3Cjstor_cross%3E2417341%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=82913885&rft_id=info:pmid/238239&rft_jstor_id=2417341&rfr_iscdi=true