Heat Production in Non-Myelinated Nerves
Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B, Biological sciences Biological sciences, 1975-06, Vol.270 (908), p.425-432 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | 908 |
container_start_page | 425 |
container_title | Philosophical transactions of the Royal Society of London. Series B, Biological sciences |
container_volume | 270 |
creator | Howarth, J. V. |
description | Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane. |
doi_str_mv | 10.1098/rstb.1975.0020 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_2417341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2417341</jstor_id><sourcerecordid>2417341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</originalsourceid><addsrcrecordid>eNp9UE1PFDEYboxfK3r15GFPhMssb7-27cVECYoJolE8NzOdjnQzOx3aDmT99bYOETjAqXnzfPV5EHqLYYVBycMQU7PCSvAVAIEnaIGZwBVRAp6iBag1qSSj65foVYwbAFBcsBfoOaGSULVABye2TsvvwbeTSc4PSzcsz_xQfd3Z3g11su3yzIYrG1-jZ13dR_vm5t1Dvz4dnx-dVKffPn85-nBaGc55qlhHmOgkUxY3nVCkxlxwbBopm9a0uIZOMaaMFB3GBoTk1grTGAJK1EBNQ_fQ_uw7Bn852Zj01kVj-74erJ-ilkRhKiXPxNVMNMHHGGynx-C2ddhpDLoso8syuiyjyzJZ8O7GeWq2tv1Pn6fIMJ3h4He5oDfOpp3e-CkM-XzY9PIx1Y-f5x-xWqsrIsApkBokxcCwYET_ceM_t4LrjGsX42R1Yd0PebDIJiYfbntkW8pwhg9n-ML9vrh2wep7f8vHmO1KYIlipEz5_lFFiTd-SHZId3W6m_pej21H_wKSksSt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>82913885</pqid></control><display><type>article</type><title>Heat Production in Non-Myelinated Nerves</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Howarth, J. V.</creator><creatorcontrib>Howarth, J. V.</creatorcontrib><description>Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.</description><identifier>ISSN: 0962-8436</identifier><identifier>ISSN: 0080-4622</identifier><identifier>EISSN: 1471-2970</identifier><identifier>EISSN: 2054-0280</identifier><identifier>DOI: 10.1098/rstb.1975.0020</identifier><identifier>PMID: 238239</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Action Potentials ; Animals ; Capacitance ; Dielectric materials ; Electrophysiology ; Energy ; Entropy ; Heat ; Hot Temperature ; Models, Neurological ; Nerves ; Rabbits ; Thermodynamics ; Thermogenesis ; Thermopiles ; Time Factors ; Unmyelinated nerve fibers ; Vagus Nerve - physiology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1975-06, Vol.270 (908), p.425-432</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</citedby><cites>FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2417341$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2417341$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/238239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howarth, J. V.</creatorcontrib><title>Heat Production in Non-Myelinated Nerves</title><title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Capacitance</subject><subject>Dielectric materials</subject><subject>Electrophysiology</subject><subject>Energy</subject><subject>Entropy</subject><subject>Heat</subject><subject>Hot Temperature</subject><subject>Models, Neurological</subject><subject>Nerves</subject><subject>Rabbits</subject><subject>Thermodynamics</subject><subject>Thermogenesis</subject><subject>Thermopiles</subject><subject>Time Factors</subject><subject>Unmyelinated nerve fibers</subject><subject>Vagus Nerve - physiology</subject><issn>0962-8436</issn><issn>0080-4622</issn><issn>1471-2970</issn><issn>2054-0280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UE1PFDEYboxfK3r15GFPhMssb7-27cVECYoJolE8NzOdjnQzOx3aDmT99bYOETjAqXnzfPV5EHqLYYVBycMQU7PCSvAVAIEnaIGZwBVRAp6iBag1qSSj65foVYwbAFBcsBfoOaGSULVABye2TsvvwbeTSc4PSzcsz_xQfd3Z3g11su3yzIYrG1-jZ13dR_vm5t1Dvz4dnx-dVKffPn85-nBaGc55qlhHmOgkUxY3nVCkxlxwbBopm9a0uIZOMaaMFB3GBoTk1grTGAJK1EBNQ_fQ_uw7Bn852Zj01kVj-74erJ-ilkRhKiXPxNVMNMHHGGynx-C2ddhpDLoso8syuiyjyzJZ8O7GeWq2tv1Pn6fIMJ3h4He5oDfOpp3e-CkM-XzY9PIx1Y-f5x-xWqsrIsApkBokxcCwYET_ceM_t4LrjGsX42R1Yd0PebDIJiYfbntkW8pwhg9n-ML9vrh2wep7f8vHmO1KYIlipEz5_lFFiTd-SHZId3W6m_pej21H_wKSksSt</recordid><startdate>19750610</startdate><enddate>19750610</enddate><creator>Howarth, J. V.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19750610</creationdate><title>Heat Production in Non-Myelinated Nerves</title><author>Howarth, J. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-4f247f849e1bf792a15751cb88bdcd1a0f9449c87f11c0785ee7cbc2097a03cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Capacitance</topic><topic>Dielectric materials</topic><topic>Electrophysiology</topic><topic>Energy</topic><topic>Entropy</topic><topic>Heat</topic><topic>Hot Temperature</topic><topic>Models, Neurological</topic><topic>Nerves</topic><topic>Rabbits</topic><topic>Thermodynamics</topic><topic>Thermogenesis</topic><topic>Thermopiles</topic><topic>Time Factors</topic><topic>Unmyelinated nerve fibers</topic><topic>Vagus Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howarth, J. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howarth, J. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Production in Non-Myelinated Nerves</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>1975-06-10</date><risdate>1975</risdate><volume>270</volume><issue>908</issue><spage>425</spage><epage>432</epage><pages>425-432</pages><issn>0962-8436</issn><issn>0080-4622</issn><eissn>1471-2970</eissn><eissn>2054-0280</eissn><abstract>Experiments with the C fibres of the rabbit vagus nerve have established that heat is evolved during the depolarizing phase of the action potential and is absorbed during the repolarizing phase. Subsequent studies using the pike olfactory nerve indicate that the heat production begins at a high rate very early in the depolarizing phase and is completed in advance of the peak of the spike. This would be expected if the heat arises from the energy released by the discharge of the membrane capacitance which varies as the square of the membrane potential; but estimates of the stored energy fall short of the observed heat production by a factor of two or three times. The prominent cooling phase suggests that a substantial part of the heat may arise from an entropy change. Such an entropy change would be expected to result from the change in the electrical stress in the dielectric of the membrane capacitance, and may thus be a manifestation of reversible changes in the molecular architecture of the insulating matrix of the membrane.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>238239</pmid><doi>10.1098/rstb.1975.0020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1975-06, Vol.270 (908), p.425-432 |
issn | 0962-8436 0080-4622 1471-2970 2054-0280 |
language | eng |
recordid | cdi_jstor_primary_2417341 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing |
subjects | Action Potentials Animals Capacitance Dielectric materials Electrophysiology Energy Entropy Heat Hot Temperature Models, Neurological Nerves Rabbits Thermodynamics Thermogenesis Thermopiles Time Factors Unmyelinated nerve fibers Vagus Nerve - physiology |
title | Heat Production in Non-Myelinated Nerves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Production%20in%20Non-Myelinated%20Nerves&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B,%20Biological%20sciences&rft.au=Howarth,%20J.%20V.&rft.date=1975-06-10&rft.volume=270&rft.issue=908&rft.spage=425&rft.epage=432&rft.pages=425-432&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1975.0020&rft_dat=%3Cjstor_cross%3E2417341%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=82913885&rft_id=info:pmid/238239&rft_jstor_id=2417341&rfr_iscdi=true |