Biochemistry of Nitrogenase and the Physiology of Related Metabolism [and Discussion]

The properties of the newly discovered vanadium nitrogenase are compared with those of the better-known molybdenum nitrogenase and some aspects of the physiology of the latter are discussed. Both nitrogenases have dimeric Fe proteins of relative molecular mass (M$_r$) ca. 65 000 containing a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B, Biological sciences Biological sciences, 1987-09, Vol.317 (1184), p.131-146
Hauptverfasser: Smith, B. E., Campbell, F., Eady, R. R., Eldridge, M., Ford, C. M., Hill, Susan, Kavanagh, E. P., Lowe, D. J., Miller, R. W., Richardson, T. H., Robson, R. L., Thorneley, R. N. F., Yates, M. G., Johnston, A. W. B., Chatt, J., Becking, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1184
container_start_page 131
container_title Philosophical transactions of the Royal Society of London. Series B, Biological sciences
container_volume 317
creator Smith, B. E.
Campbell, F.
Eady, R. R.
Eldridge, M.
Ford, C. M.
Hill, Susan
Kavanagh, E. P.
Lowe, D. J.
Miller, R. W.
Richardson, T. H.
Robson, R. L.
Thorneley, R. N. F.
Yates, M. G.
Johnston, A. W. B.
Chatt, J.
Becking, J. H.
description The properties of the newly discovered vanadium nitrogenase are compared with those of the better-known molybdenum nitrogenase and some aspects of the physiology of the latter are discussed. Both nitrogenases have dimeric Fe proteins of relative molecular mass (M$_r$) ca. 65 000 containing a single [4Fe-4S] cluster. These act as MgATP-activated electron transfer agents to the MoFe or VaFe proteins, which include the substrate binding and reducing site. Both enzymes reduce H$^+$ to H$_2$, N$_2$ to NH$_3$ and C$_2$H$_2$ to C$_2$H$_4$, but the vanadium enzyme is less efficient in the last two reactions. The MoFe protein is an $\alpha_2$$\beta_2$ tetramer of M$_r$ ca. 220 000 and containing 2 Mo atoms and about 30 Fe atoms and S$^{2-}$ ions per molecule. The VaFe protein has a similar polypeptide structure and may also have an additional, small (M$_r$ \backsimeq 6000) ferredoxin-like subunit. Current preparations contain 2 Va atoms and about 20 Fe atoms and S$^{2-}$ ions in a molecule of M$_r$ ca. 210 000. The active site of the MoFe protein is an iron-molybdenum cofactor of unknown structure and complex biosynthesis. The Lowe-Thorneley model for nitrogenase function is summarized. Ferredoxins or flavodoxins are the physiological electron carriers to molybdenum nitrogenase. Many aerobic diazotrophs have an uptake hydrogenase to recycle the electrons and energy wasted by the obligate H$_2$ evolution that accompanies N$_2$ fixation. Both nitrogenases are damaged by O$_2$, but many diazotrophs are aerobes or generate O$_2$ from photosynthesis. Some of the complexities of the interactions between O$_2$ and N$_2$-fixation are discussed.
doi_str_mv 10.1098/rstb.1987.0052
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_2396531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2396531</jstor_id><sourcerecordid>2396531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d4d0f074bf35b5b11a489b433ee4fe601932cbfa7d88fc9b3626ff82bd41af713</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1EJZbClROHfIFsZ2InsU-Ilr9Soai0J4QsO7E3XmXjle0tCp-eJIsQFaIna-T3fvPmEfICYY0g-FmISa9R8HoNUBaPyApZjXkhanhMViCqIueMVk_I0xi3ACDKmq3I7bnzTWd2LqYwZt5mn10KfmMGFU2mhjZLncm-dGN0vvebRXFtepVMm30ySWnfu7jLvs3KNy42hzgJh-_PyIlVfTTPf7-n5Pbd25uLD_nl1fuPF68v84ZRkfKWtWChZtrSUpcaUTEuNKPUGGZNBSho0Wir6pZz2whNq6Kylhe6ZahsjfSUrI_cJvgYg7FyH9xOhVEiyLkUOZci51LkXMpkiEdD8OMUzDfOpFFu_SEM0yivv96co6jEHcXaIXImgVOEkhbA5E-3X3CzQE4C6WI8GLnI7q_5dyt9aOt_s748urYx-fDnsoKKqqTz7a-O353bdD9cMPIefYE1fkhmSEvaJSdSlPbQ93Lf2okADxL8uJ8Yf3vpL0wdvww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biochemistry of Nitrogenase and the Physiology of Related Metabolism [and Discussion]</title><source>Jstor Complete Legacy</source><creator>Smith, B. E. ; Campbell, F. ; Eady, R. R. ; Eldridge, M. ; Ford, C. M. ; Hill, Susan ; Kavanagh, E. P. ; Lowe, D. J. ; Miller, R. W. ; Richardson, T. H. ; Robson, R. L. ; Thorneley, R. N. F. ; Yates, M. G. ; Johnston, A. W. B. ; Chatt, J. ; Becking, J. H.</creator><creatorcontrib>Smith, B. E. ; Campbell, F. ; Eady, R. R. ; Eldridge, M. ; Ford, C. M. ; Hill, Susan ; Kavanagh, E. P. ; Lowe, D. J. ; Miller, R. W. ; Richardson, T. H. ; Robson, R. L. ; Thorneley, R. N. F. ; Yates, M. G. ; Johnston, A. W. B. ; Chatt, J. ; Becking, J. H.</creatorcontrib><description>The properties of the newly discovered vanadium nitrogenase are compared with those of the better-known molybdenum nitrogenase and some aspects of the physiology of the latter are discussed. Both nitrogenases have dimeric Fe proteins of relative molecular mass (M$_r$) ca. 65 000 containing a single [4Fe-4S] cluster. These act as MgATP-activated electron transfer agents to the MoFe or VaFe proteins, which include the substrate binding and reducing site. Both enzymes reduce H$^+$ to H$_2$, N$_2$ to NH$_3$ and C$_2$H$_2$ to C$_2$H$_4$, but the vanadium enzyme is less efficient in the last two reactions. The MoFe protein is an $\alpha_2$$\beta_2$ tetramer of M$_r$ ca. 220 000 and containing 2 Mo atoms and about 30 Fe atoms and S$^{2-}$ ions per molecule. The VaFe protein has a similar polypeptide structure and may also have an additional, small (M$_r$ \backsimeq 6000) ferredoxin-like subunit. Current preparations contain 2 Va atoms and about 20 Fe atoms and S$^{2-}$ ions in a molecule of M$_r$ ca. 210 000. The active site of the MoFe protein is an iron-molybdenum cofactor of unknown structure and complex biosynthesis. The Lowe-Thorneley model for nitrogenase function is summarized. Ferredoxins or flavodoxins are the physiological electron carriers to molybdenum nitrogenase. Many aerobic diazotrophs have an uptake hydrogenase to recycle the electrons and energy wasted by the obligate H$_2$ evolution that accompanies N$_2$ fixation. Both nitrogenases are damaged by O$_2$, but many diazotrophs are aerobes or generate O$_2$ from photosynthesis. Some of the complexities of the interactions between O$_2$ and N$_2$-fixation are discussed.</description><identifier>ISSN: 0962-8436</identifier><identifier>ISSN: 0080-4622</identifier><identifier>EISSN: 1471-2970</identifier><identifier>EISSN: 2054-0280</identifier><identifier>DOI: 10.1098/rstb.1987.0052</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Atoms ; Azotobacter ; Azotobacter vinelandii ; Biochemistry ; Electrons ; Enzymes ; Molecules ; Molybdenum ; Nitrogen fixation ; Vanadium</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1987-09, Vol.317 (1184), p.131-146</ispartof><rights>Copyright 1987 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d4d0f074bf35b5b11a489b433ee4fe601932cbfa7d88fc9b3626ff82bd41af713</citedby><cites>FETCH-LOGICAL-c439t-d4d0f074bf35b5b11a489b433ee4fe601932cbfa7d88fc9b3626ff82bd41af713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2396531$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2396531$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Smith, B. E.</creatorcontrib><creatorcontrib>Campbell, F.</creatorcontrib><creatorcontrib>Eady, R. R.</creatorcontrib><creatorcontrib>Eldridge, M.</creatorcontrib><creatorcontrib>Ford, C. M.</creatorcontrib><creatorcontrib>Hill, Susan</creatorcontrib><creatorcontrib>Kavanagh, E. P.</creatorcontrib><creatorcontrib>Lowe, D. J.</creatorcontrib><creatorcontrib>Miller, R. W.</creatorcontrib><creatorcontrib>Richardson, T. H.</creatorcontrib><creatorcontrib>Robson, R. L.</creatorcontrib><creatorcontrib>Thorneley, R. N. F.</creatorcontrib><creatorcontrib>Yates, M. G.</creatorcontrib><creatorcontrib>Johnston, A. W. B.</creatorcontrib><creatorcontrib>Chatt, J.</creatorcontrib><creatorcontrib>Becking, J. H.</creatorcontrib><title>Biochemistry of Nitrogenase and the Physiology of Related Metabolism [and Discussion]</title><title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><description>The properties of the newly discovered vanadium nitrogenase are compared with those of the better-known molybdenum nitrogenase and some aspects of the physiology of the latter are discussed. Both nitrogenases have dimeric Fe proteins of relative molecular mass (M$_r$) ca. 65 000 containing a single [4Fe-4S] cluster. These act as MgATP-activated electron transfer agents to the MoFe or VaFe proteins, which include the substrate binding and reducing site. Both enzymes reduce H$^+$ to H$_2$, N$_2$ to NH$_3$ and C$_2$H$_2$ to C$_2$H$_4$, but the vanadium enzyme is less efficient in the last two reactions. The MoFe protein is an $\alpha_2$$\beta_2$ tetramer of M$_r$ ca. 220 000 and containing 2 Mo atoms and about 30 Fe atoms and S$^{2-}$ ions per molecule. The VaFe protein has a similar polypeptide structure and may also have an additional, small (M$_r$ \backsimeq 6000) ferredoxin-like subunit. Current preparations contain 2 Va atoms and about 20 Fe atoms and S$^{2-}$ ions in a molecule of M$_r$ ca. 210 000. The active site of the MoFe protein is an iron-molybdenum cofactor of unknown structure and complex biosynthesis. The Lowe-Thorneley model for nitrogenase function is summarized. Ferredoxins or flavodoxins are the physiological electron carriers to molybdenum nitrogenase. Many aerobic diazotrophs have an uptake hydrogenase to recycle the electrons and energy wasted by the obligate H$_2$ evolution that accompanies N$_2$ fixation. Both nitrogenases are damaged by O$_2$, but many diazotrophs are aerobes or generate O$_2$ from photosynthesis. Some of the complexities of the interactions between O$_2$ and N$_2$-fixation are discussed.</description><subject>Atoms</subject><subject>Azotobacter</subject><subject>Azotobacter vinelandii</subject><subject>Biochemistry</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Molecules</subject><subject>Molybdenum</subject><subject>Nitrogen fixation</subject><subject>Vanadium</subject><issn>0962-8436</issn><issn>0080-4622</issn><issn>1471-2970</issn><issn>2054-0280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1EJZbClROHfIFsZ2InsU-Ilr9Soai0J4QsO7E3XmXjle0tCp-eJIsQFaIna-T3fvPmEfICYY0g-FmISa9R8HoNUBaPyApZjXkhanhMViCqIueMVk_I0xi3ACDKmq3I7bnzTWd2LqYwZt5mn10KfmMGFU2mhjZLncm-dGN0vvebRXFtepVMm30ySWnfu7jLvs3KNy42hzgJh-_PyIlVfTTPf7-n5Pbd25uLD_nl1fuPF68v84ZRkfKWtWChZtrSUpcaUTEuNKPUGGZNBSho0Wir6pZz2whNq6Kylhe6ZahsjfSUrI_cJvgYg7FyH9xOhVEiyLkUOZci51LkXMpkiEdD8OMUzDfOpFFu_SEM0yivv96co6jEHcXaIXImgVOEkhbA5E-3X3CzQE4C6WI8GLnI7q_5dyt9aOt_s748urYx-fDnsoKKqqTz7a-O353bdD9cMPIefYE1fkhmSEvaJSdSlPbQ93Lf2okADxL8uJ8Yf3vpL0wdvww</recordid><startdate>19870924</startdate><enddate>19870924</enddate><creator>Smith, B. E.</creator><creator>Campbell, F.</creator><creator>Eady, R. R.</creator><creator>Eldridge, M.</creator><creator>Ford, C. M.</creator><creator>Hill, Susan</creator><creator>Kavanagh, E. P.</creator><creator>Lowe, D. J.</creator><creator>Miller, R. W.</creator><creator>Richardson, T. H.</creator><creator>Robson, R. L.</creator><creator>Thorneley, R. N. F.</creator><creator>Yates, M. G.</creator><creator>Johnston, A. W. B.</creator><creator>Chatt, J.</creator><creator>Becking, J. H.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870924</creationdate><title>Biochemistry of Nitrogenase and the Physiology of Related Metabolism [and Discussion]</title><author>Smith, B. E. ; Campbell, F. ; Eady, R. R. ; Eldridge, M. ; Ford, C. M. ; Hill, Susan ; Kavanagh, E. P. ; Lowe, D. J. ; Miller, R. W. ; Richardson, T. H. ; Robson, R. L. ; Thorneley, R. N. F. ; Yates, M. G. ; Johnston, A. W. B. ; Chatt, J. ; Becking, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d4d0f074bf35b5b11a489b433ee4fe601932cbfa7d88fc9b3626ff82bd41af713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Atoms</topic><topic>Azotobacter</topic><topic>Azotobacter vinelandii</topic><topic>Biochemistry</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Molecules</topic><topic>Molybdenum</topic><topic>Nitrogen fixation</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, B. E.</creatorcontrib><creatorcontrib>Campbell, F.</creatorcontrib><creatorcontrib>Eady, R. R.</creatorcontrib><creatorcontrib>Eldridge, M.</creatorcontrib><creatorcontrib>Ford, C. M.</creatorcontrib><creatorcontrib>Hill, Susan</creatorcontrib><creatorcontrib>Kavanagh, E. P.</creatorcontrib><creatorcontrib>Lowe, D. J.</creatorcontrib><creatorcontrib>Miller, R. W.</creatorcontrib><creatorcontrib>Richardson, T. H.</creatorcontrib><creatorcontrib>Robson, R. L.</creatorcontrib><creatorcontrib>Thorneley, R. N. F.</creatorcontrib><creatorcontrib>Yates, M. G.</creatorcontrib><creatorcontrib>Johnston, A. W. B.</creatorcontrib><creatorcontrib>Chatt, J.</creatorcontrib><creatorcontrib>Becking, J. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, B. E.</au><au>Campbell, F.</au><au>Eady, R. R.</au><au>Eldridge, M.</au><au>Ford, C. M.</au><au>Hill, Susan</au><au>Kavanagh, E. P.</au><au>Lowe, D. J.</au><au>Miller, R. W.</au><au>Richardson, T. H.</au><au>Robson, R. L.</au><au>Thorneley, R. N. F.</au><au>Yates, M. G.</au><au>Johnston, A. W. B.</au><au>Chatt, J.</au><au>Becking, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemistry of Nitrogenase and the Physiology of Related Metabolism [and Discussion]</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. B</stitle><date>1987-09-24</date><risdate>1987</risdate><volume>317</volume><issue>1184</issue><spage>131</spage><epage>146</epage><pages>131-146</pages><issn>0962-8436</issn><issn>0080-4622</issn><eissn>1471-2970</eissn><eissn>2054-0280</eissn><abstract>The properties of the newly discovered vanadium nitrogenase are compared with those of the better-known molybdenum nitrogenase and some aspects of the physiology of the latter are discussed. Both nitrogenases have dimeric Fe proteins of relative molecular mass (M$_r$) ca. 65 000 containing a single [4Fe-4S] cluster. These act as MgATP-activated electron transfer agents to the MoFe or VaFe proteins, which include the substrate binding and reducing site. Both enzymes reduce H$^+$ to H$_2$, N$_2$ to NH$_3$ and C$_2$H$_2$ to C$_2$H$_4$, but the vanadium enzyme is less efficient in the last two reactions. The MoFe protein is an $\alpha_2$$\beta_2$ tetramer of M$_r$ ca. 220 000 and containing 2 Mo atoms and about 30 Fe atoms and S$^{2-}$ ions per molecule. The VaFe protein has a similar polypeptide structure and may also have an additional, small (M$_r$ \backsimeq 6000) ferredoxin-like subunit. Current preparations contain 2 Va atoms and about 20 Fe atoms and S$^{2-}$ ions in a molecule of M$_r$ ca. 210 000. The active site of the MoFe protein is an iron-molybdenum cofactor of unknown structure and complex biosynthesis. The Lowe-Thorneley model for nitrogenase function is summarized. Ferredoxins or flavodoxins are the physiological electron carriers to molybdenum nitrogenase. Many aerobic diazotrophs have an uptake hydrogenase to recycle the electrons and energy wasted by the obligate H$_2$ evolution that accompanies N$_2$ fixation. Both nitrogenases are damaged by O$_2$, but many diazotrophs are aerobes or generate O$_2$ from photosynthesis. Some of the complexities of the interactions between O$_2$ and N$_2$-fixation are discussed.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rstb.1987.0052</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1987-09, Vol.317 (1184), p.131-146
issn 0962-8436
0080-4622
1471-2970
2054-0280
language eng
recordid cdi_jstor_primary_2396531
source Jstor Complete Legacy
subjects Atoms
Azotobacter
Azotobacter vinelandii
Biochemistry
Electrons
Enzymes
Molecules
Molybdenum
Nitrogen fixation
Vanadium
title Biochemistry of Nitrogenase and the Physiology of Related Metabolism [and Discussion]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemistry%20of%20Nitrogenase%20and%20the%20Physiology%20of%20Related%20Metabolism%20%5Band%20Discussion%5D&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B,%20Biological%20sciences&rft.au=Smith,%20B.%20E.&rft.date=1987-09-24&rft.volume=317&rft.issue=1184&rft.spage=131&rft.epage=146&rft.pages=131-146&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1987.0052&rft_dat=%3Cjstor_highw%3E2396531%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2396531&rfr_iscdi=true