Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli 09a
The lengths of bacterial polysaccharides can be critical for their biological function. Unlike DNA or protein synthesis, where polymer length is implicit in the nucleic acid template, the molecular mechanisms for regulating polysaccharide length are poorly understood. Two models are commonly cited:...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (17), p.6407-6412 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6412 |
---|---|
container_issue | 17 |
container_start_page | 6407 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | King, Jerry D. Berry, Scott Clarke, Bradley R. Morris, Richard J. Whitfield, Chris |
description | The lengths of bacterial polysaccharides can be critical for their biological function. Unlike DNA or protein synthesis, where polymer length is implicit in the nucleic acid template, the molecular mechanisms for regulating polysaccharide length are poorly understood. Two models are commonly cited: a "molecular clock" regulates length by controlling the duration of the polymer extension process, whereas a "molecular ruler" determines length by measurement against a physical structure in the biosynthetic complex. Escherichia coli O9a is a prototype for the biosynthesis of O polysaccharides by ATP-binding cassette transporter-dependent processes. The length of the O9a polysaccharide is determined by two proteins: an extension enzyme, WbdA, and a termination enzyme, WbdD. WbdD is known to self-oligomerize and also to interact with WbdA. Changing either enzyme's concentration can alter the polysaccharide length. We quantified the O9a polysaccharide length distribution and the enzyme concentration dependence in vivo, then made mathematical models to predict the polymer length distributions resulting from hypothetical length-regulation mechanisms. Our data show qualitative features that cannot be explained by either a molecular clock or a molecular ruler model. Therefore, we propose a "variable geometry" model, in which a postulated biosynthetic WbdA–WbdD complex assembles with variable stoichiometry dependent on relative enzyme concentration. Each stoichiometry produces polymers with a distinct, geometrically determined, modal length. This model reproduces the enzyme concentration dependence and modality of the observed polysaccharide length distributions. Our work highlights limitations of previous models and provides new insight into the mechanisms of length control in polysaccharide biosynthesis. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23772512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23772512</jstor_id><sourcerecordid>23772512</sourcerecordid><originalsourceid>FETCH-jstor_primary_237725123</originalsourceid><addsrcrecordid>eNqFjE0KwjAQhbNQ8PcIwlxAiFFpXYviQnDjXtJ0tFPSpGSiWK_gpY3g3tWD977v9cRQSpXN85VaDcSIuZZSbta5HIr3kVrfetuxNqbSgUqEE2gX6YYOmF4IJXEMVNwjeQfEUGLE0JDDEooONCSNHOAzouMvYnzTWnyCv8IjHerCInD0ZCryDcbQQcJ3bCoM3y4deEsgN3oi-ldtGae_HIvZfnfeHuZ10sOlDdTo0F3UMsvUeqGW__YP-41Qfw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli 09a</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>King, Jerry D. ; Berry, Scott ; Clarke, Bradley R. ; Morris, Richard J. ; Whitfield, Chris</creator><creatorcontrib>King, Jerry D. ; Berry, Scott ; Clarke, Bradley R. ; Morris, Richard J. ; Whitfield, Chris</creatorcontrib><description>The lengths of bacterial polysaccharides can be critical for their biological function. Unlike DNA or protein synthesis, where polymer length is implicit in the nucleic acid template, the molecular mechanisms for regulating polysaccharide length are poorly understood. Two models are commonly cited: a "molecular clock" regulates length by controlling the duration of the polymer extension process, whereas a "molecular ruler" determines length by measurement against a physical structure in the biosynthetic complex. Escherichia coli O9a is a prototype for the biosynthesis of O polysaccharides by ATP-binding cassette transporter-dependent processes. The length of the O9a polysaccharide is determined by two proteins: an extension enzyme, WbdA, and a termination enzyme, WbdD. WbdD is known to self-oligomerize and also to interact with WbdA. Changing either enzyme's concentration can alter the polysaccharide length. We quantified the O9a polysaccharide length distribution and the enzyme concentration dependence in vivo, then made mathematical models to predict the polymer length distributions resulting from hypothetical length-regulation mechanisms. Our data show qualitative features that cannot be explained by either a molecular clock or a molecular ruler model. Therefore, we propose a "variable geometry" model, in which a postulated biosynthetic WbdA–WbdD complex assembles with variable stoichiometry dependent on relative enzyme concentration. Each stoichiometry produces polymers with a distinct, geometrically determined, modal length. This model reproduces the enzyme concentration dependence and modality of the observed polysaccharide length distributions. Our work highlights limitations of previous models and provides new insight into the mechanisms of length control in polysaccharide biosynthesis.</description><identifier>ISSN: 0027-8424</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><subject>Biosynthesis ; Enzymes ; Escherichia coli ; Lipopolysaccharides ; Mathematical models ; Molecular chains ; Molecules ; O antigens ; Polymers ; Polysaccharides</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (17), p.6407-6412</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23772512$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23772512$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57995,58228</link.rule.ids></links><search><creatorcontrib>King, Jerry D.</creatorcontrib><creatorcontrib>Berry, Scott</creatorcontrib><creatorcontrib>Clarke, Bradley R.</creatorcontrib><creatorcontrib>Morris, Richard J.</creatorcontrib><creatorcontrib>Whitfield, Chris</creatorcontrib><title>Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli 09a</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The lengths of bacterial polysaccharides can be critical for their biological function. Unlike DNA or protein synthesis, where polymer length is implicit in the nucleic acid template, the molecular mechanisms for regulating polysaccharide length are poorly understood. Two models are commonly cited: a "molecular clock" regulates length by controlling the duration of the polymer extension process, whereas a "molecular ruler" determines length by measurement against a physical structure in the biosynthetic complex. Escherichia coli O9a is a prototype for the biosynthesis of O polysaccharides by ATP-binding cassette transporter-dependent processes. The length of the O9a polysaccharide is determined by two proteins: an extension enzyme, WbdA, and a termination enzyme, WbdD. WbdD is known to self-oligomerize and also to interact with WbdA. Changing either enzyme's concentration can alter the polysaccharide length. We quantified the O9a polysaccharide length distribution and the enzyme concentration dependence in vivo, then made mathematical models to predict the polymer length distributions resulting from hypothetical length-regulation mechanisms. Our data show qualitative features that cannot be explained by either a molecular clock or a molecular ruler model. Therefore, we propose a "variable geometry" model, in which a postulated biosynthetic WbdA–WbdD complex assembles with variable stoichiometry dependent on relative enzyme concentration. Each stoichiometry produces polymers with a distinct, geometrically determined, modal length. This model reproduces the enzyme concentration dependence and modality of the observed polysaccharide length distributions. Our work highlights limitations of previous models and provides new insight into the mechanisms of length control in polysaccharide biosynthesis.</description><subject>Biosynthesis</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Lipopolysaccharides</subject><subject>Mathematical models</subject><subject>Molecular chains</subject><subject>Molecules</subject><subject>O antigens</subject><subject>Polymers</subject><subject>Polysaccharides</subject><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjE0KwjAQhbNQ8PcIwlxAiFFpXYviQnDjXtJ0tFPSpGSiWK_gpY3g3tWD977v9cRQSpXN85VaDcSIuZZSbta5HIr3kVrfetuxNqbSgUqEE2gX6YYOmF4IJXEMVNwjeQfEUGLE0JDDEooONCSNHOAzouMvYnzTWnyCv8IjHerCInD0ZCryDcbQQcJ3bCoM3y4deEsgN3oi-ldtGae_HIvZfnfeHuZ10sOlDdTo0F3UMsvUeqGW__YP-41Qfw</recordid><startdate>20140429</startdate><enddate>20140429</enddate><creator>King, Jerry D.</creator><creator>Berry, Scott</creator><creator>Clarke, Bradley R.</creator><creator>Morris, Richard J.</creator><creator>Whitfield, Chris</creator><general>National Academy of Sciences</general><scope/></search><sort><creationdate>20140429</creationdate><title>Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli 09a</title><author>King, Jerry D. ; Berry, Scott ; Clarke, Bradley R. ; Morris, Richard J. ; Whitfield, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_237725123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biosynthesis</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Lipopolysaccharides</topic><topic>Mathematical models</topic><topic>Molecular chains</topic><topic>Molecules</topic><topic>O antigens</topic><topic>Polymers</topic><topic>Polysaccharides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Jerry D.</creatorcontrib><creatorcontrib>Berry, Scott</creatorcontrib><creatorcontrib>Clarke, Bradley R.</creatorcontrib><creatorcontrib>Morris, Richard J.</creatorcontrib><creatorcontrib>Whitfield, Chris</creatorcontrib><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Jerry D.</au><au>Berry, Scott</au><au>Clarke, Bradley R.</au><au>Morris, Richard J.</au><au>Whitfield, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli 09a</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2014-04-29</date><risdate>2014</risdate><volume>111</volume><issue>17</issue><spage>6407</spage><epage>6412</epage><pages>6407-6412</pages><issn>0027-8424</issn><abstract>The lengths of bacterial polysaccharides can be critical for their biological function. Unlike DNA or protein synthesis, where polymer length is implicit in the nucleic acid template, the molecular mechanisms for regulating polysaccharide length are poorly understood. Two models are commonly cited: a "molecular clock" regulates length by controlling the duration of the polymer extension process, whereas a "molecular ruler" determines length by measurement against a physical structure in the biosynthetic complex. Escherichia coli O9a is a prototype for the biosynthesis of O polysaccharides by ATP-binding cassette transporter-dependent processes. The length of the O9a polysaccharide is determined by two proteins: an extension enzyme, WbdA, and a termination enzyme, WbdD. WbdD is known to self-oligomerize and also to interact with WbdA. Changing either enzyme's concentration can alter the polysaccharide length. We quantified the O9a polysaccharide length distribution and the enzyme concentration dependence in vivo, then made mathematical models to predict the polymer length distributions resulting from hypothetical length-regulation mechanisms. Our data show qualitative features that cannot be explained by either a molecular clock or a molecular ruler model. Therefore, we propose a "variable geometry" model, in which a postulated biosynthetic WbdA–WbdD complex assembles with variable stoichiometry dependent on relative enzyme concentration. Each stoichiometry produces polymers with a distinct, geometrically determined, modal length. This model reproduces the enzyme concentration dependence and modality of the observed polysaccharide length distributions. Our work highlights limitations of previous models and provides new insight into the mechanisms of length control in polysaccharide biosynthesis.</abstract><pub>National Academy of Sciences</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (17), p.6407-6412 |
issn | 0027-8424 |
language | eng |
recordid | cdi_jstor_primary_23772512 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biosynthesis Enzymes Escherichia coli Lipopolysaccharides Mathematical models Molecular chains Molecules O antigens Polymers Polysaccharides |
title | Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli 09a |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipopolysaccharide%20O%20antigen%20size%20distribution%20is%20determined%20by%20a%20chain%20extension%20complex%20of%20variable%20stoichiometry%20in%20Escherichia%20coli%2009a&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=King,%20Jerry%20D.&rft.date=2014-04-29&rft.volume=111&rft.issue=17&rft.spage=6407&rft.epage=6412&rft.pages=6407-6412&rft.issn=0027-8424&rft_id=info:doi/&rft_dat=%3Cjstor%3E23772512%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23772512&rfr_iscdi=true |