BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease
Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-11, Vol.110 (48), p.19567-19572 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19572 |
---|---|
container_issue | 48 |
container_start_page | 19567 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Burke, Rebecca M. Norman, Timothy A. Haydar, Tarik F. Slack, Barbara E. Leeman, Susan E. Blusztajn, Jan Krzysztof Mellott, Tiffany J. |
description | Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer’s disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD. |
doi_str_mv | 10.1073/pnas.1319297110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_23757299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23757299</jstor_id><sourcerecordid>23757299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-821214266ea334a931164ef7fe9edd954ab2e1512f1bfcda8afd10331c4484ca3</originalsourceid><addsrcrecordid>eNqNks2KFDEUhQtRnHF07UoNiOCmZ3LzV8lGGAf_YERBZx3SqVvdaaoqPUm1MK58DV_PJzFFt93qRjfJhfvlnNzLqaqHQE-B1vxsPbh8ChwMMzUAvVUdAzUwU8LQ29UxpayeacHEUXUv5xWl1EhN71ZHTDDQ0tDjyr18_9EQ12MXYnIj5lLfdDE0MYdSDw0Zl0j8MnZhwLQInjTYoh9JGIgjfdxkLGeDHYktOe--LjH0mH58-55JEzK6jPerO63rMj7Y3SfV1etXny_ezi4_vHl3cX4580qKcaYZMBBMKXScC2c4gBLY1i0abBojhZszBAmshXnrG6dd2wDlHLwQWnjHT6oXW931Zt5j43EYk-vsOoXepRsbXbB_doawtIv4xXItJEhWBJ7vBFK83mAebR-yx65zA5Y5LWhaPkW1rv-NCsMUM0r8h6pQjNeUmwl9-he6ips0lKVNlALOpZGFOttSPsWcE7b7EYHaKRR2CoU9hKK8ePz7Zvb8rxQU4NkOcNm7rk1u8CEfuNrUejsL2XGTw962-AptwUg1bebRFlnlMaaDBK9lzYwp_SfbfuuidYtUbK4-MQqKUhDlFPwnWundGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466133595</pqid></control><display><type>article</type><title>BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Burke, Rebecca M. ; Norman, Timothy A. ; Haydar, Tarik F. ; Slack, Barbara E. ; Leeman, Susan E. ; Blusztajn, Jan Krzysztof ; Mellott, Tiffany J.</creator><creatorcontrib>Burke, Rebecca M. ; Norman, Timothy A. ; Haydar, Tarik F. ; Slack, Barbara E. ; Leeman, Susan E. ; Blusztajn, Jan Krzysztof ; Mellott, Tiffany J.</creatorcontrib><description>Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer’s disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1319297110</identifier><identifier>PMID: 24218590</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Alzheimer disease ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Alzheimers disease ; amyloid ; amyloidosis ; Amyloidosis - metabolism ; Amyloids ; Analysis of Variance ; Animal models ; Animals ; Biological and medical sciences ; Biological Sciences ; bone morphogenetic proteins ; cerebral cortex ; choline acetyltransferase ; Cholinergic Neurons - drug effects ; Cholinergic Neurons - metabolism ; Cholinergics ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Disease models ; Female ; Forebrain ; Fundamental and applied biological sciences. Psychology ; Gene expression ; genetically modified organisms ; genotype ; Genotype & phenotype ; green fluorescent protein ; Growth Differentiation Factor 2 - administration & dosage ; Growth Differentiation Factor 2 - metabolism ; Growth Differentiation Factor 2 - pharmacology ; Hippocampus ; Hippocampus hippocampus ; Immunoassay ; Immunoblotting ; Immunohistochemistry ; insulin-like growth factor I ; Insulin-like growth factors ; Male ; Medical sciences ; memory ; Mice ; Microscopy, Fluorescence ; nerve growth factor ; Neurochemistry ; Neurology ; Neurons ; patients ; phenotype ; receptor protein-tyrosine kinase ; Receptors ; Rodents ; Signal transduction ; Vertebrates: nervous system and sense organs</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-11, Vol.110 (48), p.19567-19572</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 26, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-821214266ea334a931164ef7fe9edd954ab2e1512f1bfcda8afd10331c4484ca3</citedby><cites>FETCH-LOGICAL-c654t-821214266ea334a931164ef7fe9edd954ab2e1512f1bfcda8afd10331c4484ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23757299$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23757299$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27978642$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24218590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, Rebecca M.</creatorcontrib><creatorcontrib>Norman, Timothy A.</creatorcontrib><creatorcontrib>Haydar, Tarik F.</creatorcontrib><creatorcontrib>Slack, Barbara E.</creatorcontrib><creatorcontrib>Leeman, Susan E.</creatorcontrib><creatorcontrib>Blusztajn, Jan Krzysztof</creatorcontrib><creatorcontrib>Mellott, Tiffany J.</creatorcontrib><title>BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer’s disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.</description><subject>Alzheimer disease</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>amyloid</subject><subject>amyloidosis</subject><subject>Amyloidosis - metabolism</subject><subject>Amyloids</subject><subject>Analysis of Variance</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>bone morphogenetic proteins</subject><subject>cerebral cortex</subject><subject>choline acetyltransferase</subject><subject>Cholinergic Neurons - drug effects</subject><subject>Cholinergic Neurons - metabolism</subject><subject>Cholinergics</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Disease models</subject><subject>Female</subject><subject>Forebrain</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>genetically modified organisms</subject><subject>genotype</subject><subject>Genotype & phenotype</subject><subject>green fluorescent protein</subject><subject>Growth Differentiation Factor 2 - administration & dosage</subject><subject>Growth Differentiation Factor 2 - metabolism</subject><subject>Growth Differentiation Factor 2 - pharmacology</subject><subject>Hippocampus</subject><subject>Hippocampus hippocampus</subject><subject>Immunoassay</subject><subject>Immunoblotting</subject><subject>Immunohistochemistry</subject><subject>insulin-like growth factor I</subject><subject>Insulin-like growth factors</subject><subject>Male</subject><subject>Medical sciences</subject><subject>memory</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>nerve growth factor</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurons</subject><subject>patients</subject><subject>phenotype</subject><subject>receptor protein-tyrosine kinase</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2KFDEUhQtRnHF07UoNiOCmZ3LzV8lGGAf_YERBZx3SqVvdaaoqPUm1MK58DV_PJzFFt93qRjfJhfvlnNzLqaqHQE-B1vxsPbh8ChwMMzUAvVUdAzUwU8LQ29UxpayeacHEUXUv5xWl1EhN71ZHTDDQ0tDjyr18_9EQ12MXYnIj5lLfdDE0MYdSDw0Zl0j8MnZhwLQInjTYoh9JGIgjfdxkLGeDHYktOe--LjH0mH58-55JEzK6jPerO63rMj7Y3SfV1etXny_ezi4_vHl3cX4580qKcaYZMBBMKXScC2c4gBLY1i0abBojhZszBAmshXnrG6dd2wDlHLwQWnjHT6oXW931Zt5j43EYk-vsOoXepRsbXbB_doawtIv4xXItJEhWBJ7vBFK83mAebR-yx65zA5Y5LWhaPkW1rv-NCsMUM0r8h6pQjNeUmwl9-he6ips0lKVNlALOpZGFOttSPsWcE7b7EYHaKRR2CoU9hKK8ePz7Zvb8rxQU4NkOcNm7rk1u8CEfuNrUejsL2XGTw962-AptwUg1bebRFlnlMaaDBK9lzYwp_SfbfuuidYtUbK4-MQqKUhDlFPwnWundGw</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Burke, Rebecca M.</creator><creator>Norman, Timothy A.</creator><creator>Haydar, Tarik F.</creator><creator>Slack, Barbara E.</creator><creator>Leeman, Susan E.</creator><creator>Blusztajn, Jan Krzysztof</creator><creator>Mellott, Tiffany J.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131126</creationdate><title>BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease</title><author>Burke, Rebecca M. ; Norman, Timothy A. ; Haydar, Tarik F. ; Slack, Barbara E. ; Leeman, Susan E. ; Blusztajn, Jan Krzysztof ; Mellott, Tiffany J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-821214266ea334a931164ef7fe9edd954ab2e1512f1bfcda8afd10331c4484ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alzheimer disease</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>amyloid</topic><topic>amyloidosis</topic><topic>Amyloidosis - metabolism</topic><topic>Amyloids</topic><topic>Analysis of Variance</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>bone morphogenetic proteins</topic><topic>cerebral cortex</topic><topic>choline acetyltransferase</topic><topic>Cholinergic Neurons - drug effects</topic><topic>Cholinergic Neurons - metabolism</topic><topic>Cholinergics</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Disease models</topic><topic>Female</topic><topic>Forebrain</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>genetically modified organisms</topic><topic>genotype</topic><topic>Genotype & phenotype</topic><topic>green fluorescent protein</topic><topic>Growth Differentiation Factor 2 - administration & dosage</topic><topic>Growth Differentiation Factor 2 - metabolism</topic><topic>Growth Differentiation Factor 2 - pharmacology</topic><topic>Hippocampus</topic><topic>Hippocampus hippocampus</topic><topic>Immunoassay</topic><topic>Immunoblotting</topic><topic>Immunohistochemistry</topic><topic>insulin-like growth factor I</topic><topic>Insulin-like growth factors</topic><topic>Male</topic><topic>Medical sciences</topic><topic>memory</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>nerve growth factor</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurons</topic><topic>patients</topic><topic>phenotype</topic><topic>receptor protein-tyrosine kinase</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Rebecca M.</creatorcontrib><creatorcontrib>Norman, Timothy A.</creatorcontrib><creatorcontrib>Haydar, Tarik F.</creatorcontrib><creatorcontrib>Slack, Barbara E.</creatorcontrib><creatorcontrib>Leeman, Susan E.</creatorcontrib><creatorcontrib>Blusztajn, Jan Krzysztof</creatorcontrib><creatorcontrib>Mellott, Tiffany J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Rebecca M.</au><au>Norman, Timothy A.</au><au>Haydar, Tarik F.</au><au>Slack, Barbara E.</au><au>Leeman, Susan E.</au><au>Blusztajn, Jan Krzysztof</au><au>Mellott, Tiffany J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-11-26</date><risdate>2013</risdate><volume>110</volume><issue>48</issue><spage>19567</spage><epage>19572</epage><pages>19567-19572</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer’s disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>24218590</pmid><doi>10.1073/pnas.1319297110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-11, Vol.110 (48), p.19567-19572 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_23757299 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alzheimer disease Alzheimer Disease - metabolism Alzheimer's disease Alzheimers disease amyloid amyloidosis Amyloidosis - metabolism Amyloids Analysis of Variance Animal models Animals Biological and medical sciences Biological Sciences bone morphogenetic proteins cerebral cortex choline acetyltransferase Cholinergic Neurons - drug effects Cholinergic Neurons - metabolism Cholinergics Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Disease models Female Forebrain Fundamental and applied biological sciences. Psychology Gene expression genetically modified organisms genotype Genotype & phenotype green fluorescent protein Growth Differentiation Factor 2 - administration & dosage Growth Differentiation Factor 2 - metabolism Growth Differentiation Factor 2 - pharmacology Hippocampus Hippocampus hippocampus Immunoassay Immunoblotting Immunohistochemistry insulin-like growth factor I Insulin-like growth factors Male Medical sciences memory Mice Microscopy, Fluorescence nerve growth factor Neurochemistry Neurology Neurons patients phenotype receptor protein-tyrosine kinase Receptors Rodents Signal transduction Vertebrates: nervous system and sense organs |
title | BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BMP9%20ameliorates%20amyloidosis%20and%20the%20cholinergic%20defect%20in%20a%20mouse%20model%20of%20Alzheimer%E2%80%99s%20disease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Burke,%20Rebecca%20M.&rft.date=2013-11-26&rft.volume=110&rft.issue=48&rft.spage=19567&rft.epage=19572&rft.pages=19567-19572&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1319297110&rft_dat=%3Cjstor_fao_a%3E23757299%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466133595&rft_id=info:pmid/24218590&rft_jstor_id=23757299&rfr_iscdi=true |