Transformation of Tetrahymena to Cycloheximide Resistance with a Ribosomal Protein Gene Through Sequence Replacement

A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-11, Vol.88 (21), p.9493-9497
Hauptverfasser: Yao, Meng-Chao, Yao, Ching-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9497
container_issue 21
container_start_page 9493
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 88
creator Yao, Meng-Chao
Yao, Ching-Ho
description A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have cloned and sequenced the homologue of this gene from both a wild-type and a cycloheximide-resistant (ChxA) strain of Tetrahymena. Surprisingly, a comparison shows that the ChxA mutation is not present in the CYH2 homologue. We therefore created the yeast mutations in the Tetrahymena gene by site-directed mutagenesis and used them to transform Tetrahymena either with or without linking to an rDNA vector. All clones transformed by the rDNA vector also became resistant to cycloheximide when the rDNA contained the engineered mutant genes. Without the rDNA vector, the mutant genes transform ≈1% of injected cells to become resistant to cycloheximide. DNA analysis indicates that transformation occurs by replacement of the host sequence and not by random integration of the injected sequence. The replacement occurs to some but not all copies of this gene in the polyploid macronuclear genome. Thus, transformation in Tetrahymena occurs by specific sequence replacement, and the injected mutant genes can serve as dominant selectable transformation markers in this organism.
doi_str_mv 10.1073/pnas.88.21.9493
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_jstor_primary_2357829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2357829</jstor_id><sourcerecordid>2357829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-674a90a56552a1ff37a6fc8b03559d941105dd6691e4ddc929a668d0ddecb26f3</originalsourceid><addsrcrecordid>eNp9kcFv0zAYxSMEGmVw5gLIhwlO7WzHdmyJC6pgIE0ClXK2vjpfFk9JXGyXrf89iVoKu3Dy4f3ee_70iuIlowtGq_JyO0BaaL3gbGGEKR8VM0YNmyth6ONiRimv5lpw8bR4ltItpdRITc-KM2aEKlU5K_I6wpCaEHvIPgwkNGSNOUK773EAkgNZ7l0XWrz3va-RrDD5lGFwSO58bgmQld-EFHroyLcYMvqBXOGAZN3GsLtpyXf8ucMJX-G2A4djbH5ePGmgS_ji-J4XPz59XC8_z6-_Xn1ZfrieO8l5nqtKgKEglZQcWNOUFajG6Q0tpTS1EYxRWddKGYairp3hBpTSNa1rdBuumvK8eH_I3e42PdZurI7Q2W30PcS9DeDtQ2Xwrb0Jv6zklRCj_e3RHsN4RMq298lh18GAYZcsU1RpI-kIXh5AF0NKEZtTBaN2mslOM1mtLWd2mml0vP73Z3_5wy6jfnHUITnomnEk59MJk1RUmsoRe3PEpvw_6oOed_8FbLPruoz3eSRfHcjblEM8obyUleam_A3gf8Ax</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16068950</pqid></control><display><type>article</type><title>Transformation of Tetrahymena to Cycloheximide Resistance with a Ribosomal Protein Gene Through Sequence Replacement</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yao, Meng-Chao ; Yao, Ching-Ho</creator><creatorcontrib>Yao, Meng-Chao ; Yao, Ching-Ho</creatorcontrib><description>A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have cloned and sequenced the homologue of this gene from both a wild-type and a cycloheximide-resistant (ChxA) strain of Tetrahymena. Surprisingly, a comparison shows that the ChxA mutation is not present in the CYH2 homologue. We therefore created the yeast mutations in the Tetrahymena gene by site-directed mutagenesis and used them to transform Tetrahymena either with or without linking to an rDNA vector. All clones transformed by the rDNA vector also became resistant to cycloheximide when the rDNA contained the engineered mutant genes. Without the rDNA vector, the mutant genes transform ≈1% of injected cells to become resistant to cycloheximide. DNA analysis indicates that transformation occurs by replacement of the host sequence and not by random integration of the injected sequence. The replacement occurs to some but not all copies of this gene in the polyploid macronuclear genome. Thus, transformation in Tetrahymena occurs by specific sequence replacement, and the injected mutant genes can serve as dominant selectable transformation markers in this organism.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.88.21.9493</identifier><identifier>PMID: 1946363</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Alleles ; Amino Acid Sequence ; Amino acids ; Animals ; Base Sequence ; Biological and medical sciences ; Cloning, Molecular ; Codons ; Complementary DNA ; Cycloheximide - pharmacology ; DNA ; DNA Mutational Analysis ; Drug Resistance ; Fundamental and applied biological sciences. Psychology ; Genes ; Genes, Fungal ; Genetic mutation ; Genetic Vectors ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenesis. Repair ; Phenotypes ; Recombination, Genetic ; Ribosomal DNA ; ribosomal protein L29 ; Ribosomal Proteins - genetics ; Tetrahymena thermophila - genetics ; Transformation, Genetic ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1991-11, Vol.88 (21), p.9493-9497</ispartof><rights>Copyright 1991 The National Academy of Sciences of the United States of America</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-674a90a56552a1ff37a6fc8b03559d941105dd6691e4ddc929a668d0ddecb26f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/88/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2357829$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2357829$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5047805$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1946363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Meng-Chao</creatorcontrib><creatorcontrib>Yao, Ching-Ho</creatorcontrib><title>Transformation of Tetrahymena to Cycloheximide Resistance with a Ribosomal Protein Gene Through Sequence Replacement</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have cloned and sequenced the homologue of this gene from both a wild-type and a cycloheximide-resistant (ChxA) strain of Tetrahymena. Surprisingly, a comparison shows that the ChxA mutation is not present in the CYH2 homologue. We therefore created the yeast mutations in the Tetrahymena gene by site-directed mutagenesis and used them to transform Tetrahymena either with or without linking to an rDNA vector. All clones transformed by the rDNA vector also became resistant to cycloheximide when the rDNA contained the engineered mutant genes. Without the rDNA vector, the mutant genes transform ≈1% of injected cells to become resistant to cycloheximide. DNA analysis indicates that transformation occurs by replacement of the host sequence and not by random integration of the injected sequence. The replacement occurs to some but not all copies of this gene in the polyploid macronuclear genome. Thus, transformation in Tetrahymena occurs by specific sequence replacement, and the injected mutant genes can serve as dominant selectable transformation markers in this organism.</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Codons</subject><subject>Complementary DNA</subject><subject>Cycloheximide - pharmacology</subject><subject>DNA</subject><subject>DNA Mutational Analysis</subject><subject>Drug Resistance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genetic mutation</subject><subject>Genetic Vectors</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis. Repair</subject><subject>Phenotypes</subject><subject>Recombination, Genetic</subject><subject>Ribosomal DNA</subject><subject>ribosomal protein L29</subject><subject>Ribosomal Proteins - genetics</subject><subject>Tetrahymena thermophila - genetics</subject><subject>Transformation, Genetic</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFv0zAYxSMEGmVw5gLIhwlO7WzHdmyJC6pgIE0ClXK2vjpfFk9JXGyXrf89iVoKu3Dy4f3ee_70iuIlowtGq_JyO0BaaL3gbGGEKR8VM0YNmyth6ONiRimv5lpw8bR4ltItpdRITc-KM2aEKlU5K_I6wpCaEHvIPgwkNGSNOUK773EAkgNZ7l0XWrz3va-RrDD5lGFwSO58bgmQld-EFHroyLcYMvqBXOGAZN3GsLtpyXf8ucMJX-G2A4djbH5ePGmgS_ji-J4XPz59XC8_z6-_Xn1ZfrieO8l5nqtKgKEglZQcWNOUFajG6Q0tpTS1EYxRWddKGYairp3hBpTSNa1rdBuumvK8eH_I3e42PdZurI7Q2W30PcS9DeDtQ2Xwrb0Jv6zklRCj_e3RHsN4RMq298lh18GAYZcsU1RpI-kIXh5AF0NKEZtTBaN2mslOM1mtLWd2mml0vP73Z3_5wy6jfnHUITnomnEk59MJk1RUmsoRe3PEpvw_6oOed_8FbLPruoz3eSRfHcjblEM8obyUleam_A3gf8Ax</recordid><startdate>19911101</startdate><enddate>19911101</enddate><creator>Yao, Meng-Chao</creator><creator>Yao, Ching-Ho</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19911101</creationdate><title>Transformation of Tetrahymena to Cycloheximide Resistance with a Ribosomal Protein Gene Through Sequence Replacement</title><author>Yao, Meng-Chao ; Yao, Ching-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-674a90a56552a1ff37a6fc8b03559d941105dd6691e4ddc929a668d0ddecb26f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Codons</topic><topic>Complementary DNA</topic><topic>Cycloheximide - pharmacology</topic><topic>DNA</topic><topic>DNA Mutational Analysis</topic><topic>Drug Resistance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genetic mutation</topic><topic>Genetic Vectors</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis. Repair</topic><topic>Phenotypes</topic><topic>Recombination, Genetic</topic><topic>Ribosomal DNA</topic><topic>ribosomal protein L29</topic><topic>Ribosomal Proteins - genetics</topic><topic>Tetrahymena thermophila - genetics</topic><topic>Transformation, Genetic</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Meng-Chao</creatorcontrib><creatorcontrib>Yao, Ching-Ho</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Meng-Chao</au><au>Yao, Ching-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of Tetrahymena to Cycloheximide Resistance with a Ribosomal Protein Gene Through Sequence Replacement</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1991-11-01</date><risdate>1991</risdate><volume>88</volume><issue>21</issue><spage>9493</spage><epage>9497</epage><pages>9493-9497</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have cloned and sequenced the homologue of this gene from both a wild-type and a cycloheximide-resistant (ChxA) strain of Tetrahymena. Surprisingly, a comparison shows that the ChxA mutation is not present in the CYH2 homologue. We therefore created the yeast mutations in the Tetrahymena gene by site-directed mutagenesis and used them to transform Tetrahymena either with or without linking to an rDNA vector. All clones transformed by the rDNA vector also became resistant to cycloheximide when the rDNA contained the engineered mutant genes. Without the rDNA vector, the mutant genes transform ≈1% of injected cells to become resistant to cycloheximide. DNA analysis indicates that transformation occurs by replacement of the host sequence and not by random integration of the injected sequence. The replacement occurs to some but not all copies of this gene in the polyploid macronuclear genome. Thus, transformation in Tetrahymena occurs by specific sequence replacement, and the injected mutant genes can serve as dominant selectable transformation markers in this organism.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1946363</pmid><doi>10.1073/pnas.88.21.9493</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1991-11, Vol.88 (21), p.9493-9497
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_2357829
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Amino Acid Sequence
Amino acids
Animals
Base Sequence
Biological and medical sciences
Cloning, Molecular
Codons
Complementary DNA
Cycloheximide - pharmacology
DNA
DNA Mutational Analysis
Drug Resistance
Fundamental and applied biological sciences. Psychology
Genes
Genes, Fungal
Genetic mutation
Genetic Vectors
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mutagenesis. Repair
Phenotypes
Recombination, Genetic
Ribosomal DNA
ribosomal protein L29
Ribosomal Proteins - genetics
Tetrahymena thermophila - genetics
Transformation, Genetic
Yeasts
title Transformation of Tetrahymena to Cycloheximide Resistance with a Ribosomal Protein Gene Through Sequence Replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20Tetrahymena%20to%20Cycloheximide%20Resistance%20with%20a%20Ribosomal%20Protein%20Gene%20Through%20Sequence%20Replacement&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yao,%20Meng-Chao&rft.date=1991-11-01&rft.volume=88&rft.issue=21&rft.spage=9493&rft.epage=9497&rft.pages=9493-9497&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.88.21.9493&rft_dat=%3Cjstor_pnas_%3E2357829%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16068950&rft_id=info:pmid/1946363&rft_jstor_id=2357829&rfr_iscdi=true