Nitric Oxide: An Endogenous Modulator of Leukocyte Adhesion
The objective of this study was to determine whether endogenous nitric oxide (NO) inhibits leukocyte adhesion to vascular endothelium. This was accomplished by superfusing a cat mesenteric preparation with inhibitors of NO production, NG-monomethyl-L-arginine (L-NMMA) or NG-nitro-L-arginine methyl e...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1991-06, Vol.88 (11), p.4651-4655 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to determine whether endogenous nitric oxide (NO) inhibits leukocyte adhesion to vascular endothelium. This was accomplished by superfusing a cat mesenteric preparation with inhibitors of NO production, NG-monomethyl-L-arginine (L-NMMA) or NG-nitro-L-arginine methyl ester (L-NAME), and observing single (30-μ m diameter) venules by intravital video microscopy. Thirty minutes into the superfusion period the number of adherent and emigrated leukocytes, the erythrocyte velocity, and the venular diameter were measured; venular blood flow and shear rate were calculated from the measured parameters. The contribution of the leukocyte adhesion glycoprotein CD11/CD18 was determined using the CD18-specific monoclonal antibody IB4. Both inhibitors of NO production increased leukocyte adherence more than 15-fold. Leukocyte emigration was also enhanced, whereas venular shear rate was reduced by nearly half. Antibody IB4abolished the leukocyte adhesion induced by L-NMMA and L-NAME. Incubation of isolated cat neutrophils with L-NMMA, but not L-NAME, resulted in direct upregulation of CD11/CD18 as assessed by flow cytometry. Decrements in venular shear rate induced by partial occlusion of the superior mesenteric artery in untreated animals revealed that only a minor component of L-NAME-induced leukocyte adhesion was shear rate-dependent. The L-NAME-induced adhesion was inhibited by L-arginine but not D-arginine. These data suggest that endothelium-derived NO may be an important endogenous modulator of leukocyte adherence and that impairment of NO production results in a pattern of leukocyte adhesion and emigration that is characteristic of acute inflammation. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.88.11.4651 |