Geometric evolution of bilayers under the functionalized Cahn—Hilliard equation
We use a multi-scale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn—Hilliard equation. In contrast to analysis based on single-layer interfaces, we show that the Stefan and Mullins—Sekerka problems derived for the evolution of single-laye...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2013-05, Vol.469 (2153), p.1-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2153 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 469 |
creator | Dai, Shibin Promislow, Keith |
description | We use a multi-scale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn—Hilliard equation. In contrast to analysis based on single-layer interfaces, we show that the Stefan and Mullins—Sekerka problems derived for the evolution of single-layer interfaces for the Cahn—Hilliard equation are trivial in this context, and the sharp interface limit yields a quenched mean-curvature-driven normal velocity at O(ε -1 ), whereas on the longer O(ε -2 ) time scale, it leads to a total surface area preserving Willmore flow. In particular, for space dimension n = 2, the constrained Willmore flow drives collections of spherically symmetric vesicles to a common radius, whereas for n = 3, the radii are constant, and for n ≥ 4 the largest vesicle dominates. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23482391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23482391</jstor_id><sourcerecordid>23482391</sourcerecordid><originalsourceid>FETCH-jstor_primary_234823913</originalsourceid><addsrcrecordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52QIdE_Nz00tKcpMVkgty88pLcnMz1PIT1NIysxJrEwtKlYozUtJLVIoyUhVSCvNSwZJJ-ZkVqWmKDgnZuQ9apjikZmTk5lYlKKQWliaCJLmYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxRsYmFkbGlobGhOQB-qQ8MA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric evolution of bilayers under the functionalized Cahn—Hilliard equation</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Dai, Shibin ; Promislow, Keith</creator><creatorcontrib>Dai, Shibin ; Promislow, Keith</creatorcontrib><description>We use a multi-scale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn—Hilliard equation. In contrast to analysis based on single-layer interfaces, we show that the Stefan and Mullins—Sekerka problems derived for the evolution of single-layer interfaces for the Cahn—Hilliard equation are trivial in this context, and the sharp interface limit yields a quenched mean-curvature-driven normal velocity at O(ε -1 ), whereas on the longer O(ε -2 ) time scale, it leads to a total surface area preserving Willmore flow. In particular, for space dimension n = 2, the constrained Willmore flow drives collections of spherically symmetric vesicles to a common radius, whereas for n = 3, the radii are constant, and for n ≥ 4 the largest vesicle dominates.</description><identifier>ISSN: 1364-5021</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Cell membranes ; Coordinate systems ; Critical points ; Curvature ; Energy ; Free energy ; Mathematical constants ; Polymers ; Surface areas ; Surfactants</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-05, Vol.469 (2153), p.1-20</ispartof><rights>COPYRIGHT © 2013 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23482391$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23482391$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Dai, Shibin</creatorcontrib><creatorcontrib>Promislow, Keith</creatorcontrib><title>Geometric evolution of bilayers under the functionalized Cahn—Hilliard equation</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We use a multi-scale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn—Hilliard equation. In contrast to analysis based on single-layer interfaces, we show that the Stefan and Mullins—Sekerka problems derived for the evolution of single-layer interfaces for the Cahn—Hilliard equation are trivial in this context, and the sharp interface limit yields a quenched mean-curvature-driven normal velocity at O(ε -1 ), whereas on the longer O(ε -2 ) time scale, it leads to a total surface area preserving Willmore flow. In particular, for space dimension n = 2, the constrained Willmore flow drives collections of spherically symmetric vesicles to a common radius, whereas for n = 3, the radii are constant, and for n ≥ 4 the largest vesicle dominates.</description><subject>Cell membranes</subject><subject>Coordinate systems</subject><subject>Critical points</subject><subject>Curvature</subject><subject>Energy</subject><subject>Free energy</subject><subject>Mathematical constants</subject><subject>Polymers</subject><subject>Surface areas</subject><subject>Surfactants</subject><issn>1364-5021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52QIdE_Nz00tKcpMVkgty88pLcnMz1PIT1NIysxJrEwtKlYozUtJLVIoyUhVSCvNSwZJJ-ZkVqWmKDgnZuQ9apjikZmTk5lYlKKQWliaCJLmYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxRsYmFkbGlobGhOQB-qQ8MA</recordid><startdate>20130508</startdate><enddate>20130508</enddate><creator>Dai, Shibin</creator><creator>Promislow, Keith</creator><general>The Royal Society</general><scope/></search><sort><creationdate>20130508</creationdate><title>Geometric evolution of bilayers under the functionalized Cahn—Hilliard equation</title><author>Dai, Shibin ; Promislow, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_234823913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell membranes</topic><topic>Coordinate systems</topic><topic>Critical points</topic><topic>Curvature</topic><topic>Energy</topic><topic>Free energy</topic><topic>Mathematical constants</topic><topic>Polymers</topic><topic>Surface areas</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shibin</creatorcontrib><creatorcontrib>Promislow, Keith</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shibin</au><au>Promislow, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric evolution of bilayers under the functionalized Cahn—Hilliard equation</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2013-05-08</date><risdate>2013</risdate><volume>469</volume><issue>2153</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1364-5021</issn><abstract>We use a multi-scale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn—Hilliard equation. In contrast to analysis based on single-layer interfaces, we show that the Stefan and Mullins—Sekerka problems derived for the evolution of single-layer interfaces for the Cahn—Hilliard equation are trivial in this context, and the sharp interface limit yields a quenched mean-curvature-driven normal velocity at O(ε -1 ), whereas on the longer O(ε -2 ) time scale, it leads to a total surface area preserving Willmore flow. In particular, for space dimension n = 2, the constrained Willmore flow drives collections of spherically symmetric vesicles to a common radius, whereas for n = 3, the radii are constant, and for n ≥ 4 the largest vesicle dominates.</abstract><pub>The Royal Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-05, Vol.469 (2153), p.1-20 |
issn | 1364-5021 |
language | eng |
recordid | cdi_jstor_primary_23482391 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Cell membranes Coordinate systems Critical points Curvature Energy Free energy Mathematical constants Polymers Surface areas Surfactants |
title | Geometric evolution of bilayers under the functionalized Cahn—Hilliard equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20evolution%20of%20bilayers%20under%20the%20functionalized%20Cahn%E2%80%94Hilliard%20equation&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Dai,%20Shibin&rft.date=2013-05-08&rft.volume=469&rft.issue=2153&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1364-5021&rft_id=info:doi/&rft_dat=%3Cjstor%3E23482391%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23482391&rfr_iscdi=true |