TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH
We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide...
Gespeichert in:
Veröffentlicht in: | Journal of applied econometrics (Chichester, England) England), 2012-09, Vol.27 (6), p.978-1012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 6 |
container_start_page | 978 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 27 |
creator | BONTEMPS, CHRISTIAN MEDDAHI, NOUR |
description | We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23355910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23355910</jstor_id><sourcerecordid>23355910</sourcerecordid><originalsourceid>FETCH-LOGICAL-g868-8e0145b08aa5294e4ab4705bfceb3244b5c7412313dc13b0136df91d238f3f413</originalsourceid><addsrcrecordid>eNotzMFKxDAUQNEgCtbRTxDyA4GXvKRN3MU6dgLttEwy6yFpG3FQlNaNfy-iq8vZ3AtScDCGcaHUJSlAa2SVUOKa3KzrGQBKgKogImx9cPuGPjkfDu7xGFy_ty213h-74Rf-gVradB21w3Dobb27JVc5vq3z3X83JDxvQ71jbd-42rbsRZea6Rm4VAl0jEoYOcuYZAUq5XFOKKRMaqwkF8hxGjkm4FhO2fBJoM6YJccNuf_bntevj-X0uby-x-X7JBCVMhzwB3SdOPI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</title><source>Access via Wiley Online Library</source><source>JSTOR</source><creator>BONTEMPS, CHRISTIAN ; MEDDAHI, NOUR</creator><creatorcontrib>BONTEMPS, CHRISTIAN ; MEDDAHI, NOUR</creatorcontrib><description>We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><language>eng</language><publisher>John Wiley & Sons</publisher><subject>Consistent estimators ; Economic models ; Estimators ; Gaussian distributions ; Hermite polynomials ; Mathematical independent variables ; Mathematical moments ; Polynomials ; Sample size ; Statistical variance</subject><ispartof>Journal of applied econometrics (Chichester, England), 2012-09, Vol.27 (6), p.978-1012</ispartof><rights>Copyright © 2012 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23355910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23355910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,58022,58255</link.rule.ids></links><search><creatorcontrib>BONTEMPS, CHRISTIAN</creatorcontrib><creatorcontrib>MEDDAHI, NOUR</creatorcontrib><title>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</title><title>Journal of applied econometrics (Chichester, England)</title><description>We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.</description><subject>Consistent estimators</subject><subject>Economic models</subject><subject>Estimators</subject><subject>Gaussian distributions</subject><subject>Hermite polynomials</subject><subject>Mathematical independent variables</subject><subject>Mathematical moments</subject><subject>Polynomials</subject><subject>Sample size</subject><subject>Statistical variance</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzMFKxDAUQNEgCtbRTxDyA4GXvKRN3MU6dgLttEwy6yFpG3FQlNaNfy-iq8vZ3AtScDCGcaHUJSlAa2SVUOKa3KzrGQBKgKogImx9cPuGPjkfDu7xGFy_ty213h-74Rf-gVradB21w3Dobb27JVc5vq3z3X83JDxvQ71jbd-42rbsRZea6Rm4VAl0jEoYOcuYZAUq5XFOKKRMaqwkF8hxGjkm4FhO2fBJoM6YJccNuf_bntevj-X0uby-x-X7JBCVMhzwB3SdOPI</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>BONTEMPS, CHRISTIAN</creator><creator>MEDDAHI, NOUR</creator><general>John Wiley & Sons</general><scope/></search><sort><creationdate>20120901</creationdate><title>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</title><author>BONTEMPS, CHRISTIAN ; MEDDAHI, NOUR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g868-8e0145b08aa5294e4ab4705bfceb3244b5c7412313dc13b0136df91d238f3f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Consistent estimators</topic><topic>Economic models</topic><topic>Estimators</topic><topic>Gaussian distributions</topic><topic>Hermite polynomials</topic><topic>Mathematical independent variables</topic><topic>Mathematical moments</topic><topic>Polynomials</topic><topic>Sample size</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BONTEMPS, CHRISTIAN</creatorcontrib><creatorcontrib>MEDDAHI, NOUR</creatorcontrib><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BONTEMPS, CHRISTIAN</au><au>MEDDAHI, NOUR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>27</volume><issue>6</issue><spage>978</spage><epage>1012</epage><pages>978-1012</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.</abstract><pub>John Wiley & Sons</pub><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2012-09, Vol.27 (6), p.978-1012 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_jstor_primary_23355910 |
source | Access via Wiley Online Library; JSTOR |
subjects | Consistent estimators Economic models Estimators Gaussian distributions Hermite polynomials Mathematical independent variables Mathematical moments Polynomials Sample size Statistical variance |
title | TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TESTING%20DISTRIBUTIONAL%20ASSUMPTIONS:%20A%20GMM%20APPROACH&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=BONTEMPS,%20CHRISTIAN&rft.date=2012-09-01&rft.volume=27&rft.issue=6&rft.spage=978&rft.epage=1012&rft.pages=978-1012&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/&rft_dat=%3Cjstor%3E23355910%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23355910&rfr_iscdi=true |