TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH

We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2012-09, Vol.27 (6), p.978-1012
Hauptverfasser: BONTEMPS, CHRISTIAN, MEDDAHI, NOUR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 6
container_start_page 978
container_title Journal of applied econometrics (Chichester, England)
container_volume 27
creator BONTEMPS, CHRISTIAN
MEDDAHI, NOUR
description We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23355910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23355910</jstor_id><sourcerecordid>23355910</sourcerecordid><originalsourceid>FETCH-LOGICAL-g868-8e0145b08aa5294e4ab4705bfceb3244b5c7412313dc13b0136df91d238f3f413</originalsourceid><addsrcrecordid>eNotzMFKxDAUQNEgCtbRTxDyA4GXvKRN3MU6dgLttEwy6yFpG3FQlNaNfy-iq8vZ3AtScDCGcaHUJSlAa2SVUOKa3KzrGQBKgKogImx9cPuGPjkfDu7xGFy_ty213h-74Rf-gVradB21w3Dobb27JVc5vq3z3X83JDxvQ71jbd-42rbsRZea6Rm4VAl0jEoYOcuYZAUq5XFOKKRMaqwkF8hxGjkm4FhO2fBJoM6YJccNuf_bntevj-X0uby-x-X7JBCVMhzwB3SdOPI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</title><source>Access via Wiley Online Library</source><source>JSTOR</source><creator>BONTEMPS, CHRISTIAN ; MEDDAHI, NOUR</creator><creatorcontrib>BONTEMPS, CHRISTIAN ; MEDDAHI, NOUR</creatorcontrib><description>We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><language>eng</language><publisher>John Wiley &amp; Sons</publisher><subject>Consistent estimators ; Economic models ; Estimators ; Gaussian distributions ; Hermite polynomials ; Mathematical independent variables ; Mathematical moments ; Polynomials ; Sample size ; Statistical variance</subject><ispartof>Journal of applied econometrics (Chichester, England), 2012-09, Vol.27 (6), p.978-1012</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23355910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23355910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,58022,58255</link.rule.ids></links><search><creatorcontrib>BONTEMPS, CHRISTIAN</creatorcontrib><creatorcontrib>MEDDAHI, NOUR</creatorcontrib><title>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</title><title>Journal of applied econometrics (Chichester, England)</title><description>We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.</description><subject>Consistent estimators</subject><subject>Economic models</subject><subject>Estimators</subject><subject>Gaussian distributions</subject><subject>Hermite polynomials</subject><subject>Mathematical independent variables</subject><subject>Mathematical moments</subject><subject>Polynomials</subject><subject>Sample size</subject><subject>Statistical variance</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzMFKxDAUQNEgCtbRTxDyA4GXvKRN3MU6dgLttEwy6yFpG3FQlNaNfy-iq8vZ3AtScDCGcaHUJSlAa2SVUOKa3KzrGQBKgKogImx9cPuGPjkfDu7xGFy_ty213h-74Rf-gVradB21w3Dobb27JVc5vq3z3X83JDxvQ71jbd-42rbsRZea6Rm4VAl0jEoYOcuYZAUq5XFOKKRMaqwkF8hxGjkm4FhO2fBJoM6YJccNuf_bntevj-X0uby-x-X7JBCVMhzwB3SdOPI</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>BONTEMPS, CHRISTIAN</creator><creator>MEDDAHI, NOUR</creator><general>John Wiley &amp; Sons</general><scope/></search><sort><creationdate>20120901</creationdate><title>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</title><author>BONTEMPS, CHRISTIAN ; MEDDAHI, NOUR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g868-8e0145b08aa5294e4ab4705bfceb3244b5c7412313dc13b0136df91d238f3f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Consistent estimators</topic><topic>Economic models</topic><topic>Estimators</topic><topic>Gaussian distributions</topic><topic>Hermite polynomials</topic><topic>Mathematical independent variables</topic><topic>Mathematical moments</topic><topic>Polynomials</topic><topic>Sample size</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BONTEMPS, CHRISTIAN</creatorcontrib><creatorcontrib>MEDDAHI, NOUR</creatorcontrib><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BONTEMPS, CHRISTIAN</au><au>MEDDAHI, NOUR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>27</volume><issue>6</issue><spage>978</spage><epage>1012</epage><pages>978-1012</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>We consider testing distributional assumptions by using moment conditions. A general class of moment conditions satisfied under the null hypothesis is derived and connected to existing moment-based tests. The approach is simple and easy to implement, yet reasonably powerful. In addition, we provide moment tests that are robust against parameter estimation error uncertainty in the general case which includes the case of serial correlation. In particular, we consider the location-scale model for which we derive robust moment tests, regardless of the forms of the conditional mean and variance. We study in detail the Student and inverse Gaussian distributions. Simulation experiments are conducted to assess the finite sample properties of the tests. We provide two empirical examples on foreign exchange rates by testing the Student distributional assumption of T-GARCH daily returns and on daily realized variance by testing the inverse Gaussian distributional assumption.</abstract><pub>John Wiley &amp; Sons</pub><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2012-09, Vol.27 (6), p.978-1012
issn 0883-7252
1099-1255
language eng
recordid cdi_jstor_primary_23355910
source Access via Wiley Online Library; JSTOR
subjects Consistent estimators
Economic models
Estimators
Gaussian distributions
Hermite polynomials
Mathematical independent variables
Mathematical moments
Polynomials
Sample size
Statistical variance
title TESTING DISTRIBUTIONAL ASSUMPTIONS: A GMM APPROACH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TESTING%20DISTRIBUTIONAL%20ASSUMPTIONS:%20A%20GMM%20APPROACH&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=BONTEMPS,%20CHRISTIAN&rft.date=2012-09-01&rft.volume=27&rft.issue=6&rft.spage=978&rft.epage=1012&rft.pages=978-1012&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/&rft_dat=%3Cjstor%3E23355910%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23355910&rfr_iscdi=true