A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates

Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2013-04, Vol.280 (1756), p.1-10
Hauptverfasser: Marron, Alan O., Alston, Mark J., Heavens, Darren, Akam, Michael, Caccamo, Mario, Holland, Peter W. H., Walker, Giselle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1756
container_start_page 1
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 280
creator Marron, Alan O.
Alston, Mark J.
Heavens, Darren
Akam, Michael
Caccamo, Mario
Holland, Peter W. H.
Walker, Giselle
description Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23353368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23353368</jstor_id><sourcerecordid>23353368</sourcerecordid><originalsourceid>FETCH-jstor_primary_233533683</originalsourceid><addsrcrecordid>eNqFiUsOgjAQQLvQRPwcwWQuQEKoJbA0RuMBXLgjE2ylODCkUxfcXhbsXb2891YqyaoiT8uTyTdqK9JlWVaZ0iTqeQaHvacJ2MHLY-Q-Jf-xIJ58wwPEgIOMHKINAn72dnmWvwLEwTcYLTQt48CO8G2J5iB7tXZIYg8Ld-p4uz4u97STyKEeg-8xTHWutdG6KPW__wNR7z3b</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Marron, Alan O. ; Alston, Mark J. ; Heavens, Darren ; Akam, Michael ; Caccamo, Mario ; Holland, Peter W. H. ; Walker, Giselle</creator><creatorcontrib>Marron, Alan O. ; Alston, Mark J. ; Heavens, Darren ; Akam, Michael ; Caccamo, Mario ; Holland, Peter W. H. ; Walker, Giselle</creatorcontrib><description>Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.</description><identifier>ISSN: 0962-8452</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Amino acids ; Diatoms ; Eukaryotic cells ; Evolution ; Genes ; Genomes ; Materials ; Phylogenetics ; Silicon ; Topology</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2013-04, Vol.280 (1756), p.1-10</ispartof><rights>Copyright © 2013 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23353368$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23353368$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Marron, Alan O.</creatorcontrib><creatorcontrib>Alston, Mark J.</creatorcontrib><creatorcontrib>Heavens, Darren</creatorcontrib><creatorcontrib>Akam, Michael</creatorcontrib><creatorcontrib>Caccamo, Mario</creatorcontrib><creatorcontrib>Holland, Peter W. H.</creatorcontrib><creatorcontrib>Walker, Giselle</creatorcontrib><title>A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates</title><title>Proceedings of the Royal Society. B, Biological sciences</title><description>Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.</description><subject>Amino acids</subject><subject>Diatoms</subject><subject>Eukaryotic cells</subject><subject>Evolution</subject><subject>Genes</subject><subject>Genomes</subject><subject>Materials</subject><subject>Phylogenetics</subject><subject>Silicon</subject><subject>Topology</subject><issn>0962-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFiUsOgjAQQLvQRPwcwWQuQEKoJbA0RuMBXLgjE2ylODCkUxfcXhbsXb2891YqyaoiT8uTyTdqK9JlWVaZ0iTqeQaHvacJ2MHLY-Q-Jf-xIJ58wwPEgIOMHKINAn72dnmWvwLEwTcYLTQt48CO8G2J5iB7tXZIYg8Ld-p4uz4u97STyKEeg-8xTHWutdG6KPW__wNR7z3b</recordid><startdate>20130407</startdate><enddate>20130407</enddate><creator>Marron, Alan O.</creator><creator>Alston, Mark J.</creator><creator>Heavens, Darren</creator><creator>Akam, Michael</creator><creator>Caccamo, Mario</creator><creator>Holland, Peter W. H.</creator><creator>Walker, Giselle</creator><general>The Royal Society</general><scope/></search><sort><creationdate>20130407</creationdate><title>A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates</title><author>Marron, Alan O. ; Alston, Mark J. ; Heavens, Darren ; Akam, Michael ; Caccamo, Mario ; Holland, Peter W. H. ; Walker, Giselle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_233533683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Diatoms</topic><topic>Eukaryotic cells</topic><topic>Evolution</topic><topic>Genes</topic><topic>Genomes</topic><topic>Materials</topic><topic>Phylogenetics</topic><topic>Silicon</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marron, Alan O.</creatorcontrib><creatorcontrib>Alston, Mark J.</creatorcontrib><creatorcontrib>Heavens, Darren</creatorcontrib><creatorcontrib>Akam, Michael</creatorcontrib><creatorcontrib>Caccamo, Mario</creatorcontrib><creatorcontrib>Holland, Peter W. H.</creatorcontrib><creatorcontrib>Walker, Giselle</creatorcontrib><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marron, Alan O.</au><au>Alston, Mark J.</au><au>Heavens, Darren</au><au>Akam, Michael</au><au>Caccamo, Mario</au><au>Holland, Peter W. H.</au><au>Walker, Giselle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><date>2013-04-07</date><risdate>2013</risdate><volume>280</volume><issue>1756</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0962-8452</issn><abstract>Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.</abstract><pub>The Royal Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2013-04, Vol.280 (1756), p.1-10
issn 0962-8452
language eng
recordid cdi_jstor_primary_23353368
source JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Amino acids
Diatoms
Eukaryotic cells
Evolution
Genes
Genomes
Materials
Phylogenetics
Silicon
Topology
title A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20diatom-like%20silicon%20transporters%20in%20the%20siliceous%20loricate%20choanoflagellates&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Marron,%20Alan%20O.&rft.date=2013-04-07&rft.volume=280&rft.issue=1756&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0962-8452&rft_id=info:doi/&rft_dat=%3Cjstor%3E23353368%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23353368&rfr_iscdi=true