CORRIGENDA AND ADDENDA TO "FUNDAMENTALITY OF A CUBIC UNIT u FOR ℤ[u]"

Due to a certain ambiguity present in section 3 of [E. Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33-55], it became necessary to amend a crucial definition and a few proofs appearing in our article Fundamentality of a cubic unit u for ℤ[u]....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2012-10, Vol.81 (280), p.2383-2387
Hauptverfasser: BEERS, J., HENSHAW, D., MCCALL, C. K., MULAY, S. B., SPINDLER, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2387
container_issue 280
container_start_page 2383
container_title Mathematics of computation
container_volume 81
creator BEERS, J.
HENSHAW, D.
MCCALL, C. K.
MULAY, S. B.
SPINDLER, M.
description Due to a certain ambiguity present in section 3 of [E. Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33-55], it became necessary to amend a crucial definition and a few proofs appearing in our article Fundamentality of a cubic unit u for ℤ[u]. Here, the necessary corrections are provided.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_23267952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23267952</jstor_id><sourcerecordid>23267952</sourcerecordid><originalsourceid>FETCH-jstor_primary_232679523</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDFiYeA0MDAy1TU1N7TgYOAqLs4yMDAwNDM152Rwd_YPCvJ0d_VzcVRw9HNRcHRxAbND_BWU3EKBLF9XvxBHH8-QSAV_NwVHBedQJ09nhVA_zxCFUgU3_yCFRy1LoktjlXgYWNMSc4pTeaE0N4Osm2uIs4duVnFJflF8QVFmbmJRZbyRsZGZuaWpkTEheQD_nzIj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CORRIGENDA AND ADDENDA TO "FUNDAMENTALITY OF A CUBIC UNIT u FOR ℤ[u]"</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>BEERS, J. ; HENSHAW, D. ; MCCALL, C. K. ; MULAY, S. B. ; SPINDLER, M.</creator><creatorcontrib>BEERS, J. ; HENSHAW, D. ; MCCALL, C. K. ; MULAY, S. B. ; SPINDLER, M.</creatorcontrib><description>Due to a certain ambiguity present in section 3 of [E. Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33-55], it became necessary to amend a crucial definition and a few proofs appearing in our article Fundamentality of a cubic unit u for ℤ[u]. Here, the necessary corrections are provided.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Ambiguity ; Critical points ; Mathematical theorems</subject><ispartof>Mathematics of computation, 2012-10, Vol.81 (280), p.2383-2387</ispartof><rights>2012 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23267952$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23267952$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>BEERS, J.</creatorcontrib><creatorcontrib>HENSHAW, D.</creatorcontrib><creatorcontrib>MCCALL, C. K.</creatorcontrib><creatorcontrib>MULAY, S. B.</creatorcontrib><creatorcontrib>SPINDLER, M.</creatorcontrib><title>CORRIGENDA AND ADDENDA TO "FUNDAMENTALITY OF A CUBIC UNIT u FOR ℤ[u]"</title><title>Mathematics of computation</title><description>Due to a certain ambiguity present in section 3 of [E. Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33-55], it became necessary to amend a crucial definition and a few proofs appearing in our article Fundamentality of a cubic unit u for ℤ[u]. Here, the necessary corrections are provided.</description><subject>Ambiguity</subject><subject>Critical points</subject><subject>Mathematical theorems</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDFiYeA0MDAy1TU1N7TgYOAqLs4yMDAwNDM152Rwd_YPCvJ0d_VzcVRw9HNRcHRxAbND_BWU3EKBLF9XvxBHH8-QSAV_NwVHBedQJ09nhVA_zxCFUgU3_yCFRy1LoktjlXgYWNMSc4pTeaE0N4Osm2uIs4duVnFJflF8QVFmbmJRZbyRsZGZuaWpkTEheQD_nzIj</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>BEERS, J.</creator><creator>HENSHAW, D.</creator><creator>MCCALL, C. K.</creator><creator>MULAY, S. B.</creator><creator>SPINDLER, M.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20121001</creationdate><title>CORRIGENDA AND ADDENDA TO "FUNDAMENTALITY OF A CUBIC UNIT u FOR ℤ[u]"</title><author>BEERS, J. ; HENSHAW, D. ; MCCALL, C. K. ; MULAY, S. B. ; SPINDLER, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_232679523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ambiguity</topic><topic>Critical points</topic><topic>Mathematical theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BEERS, J.</creatorcontrib><creatorcontrib>HENSHAW, D.</creatorcontrib><creatorcontrib>MCCALL, C. K.</creatorcontrib><creatorcontrib>MULAY, S. B.</creatorcontrib><creatorcontrib>SPINDLER, M.</creatorcontrib><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BEERS, J.</au><au>HENSHAW, D.</au><au>MCCALL, C. K.</au><au>MULAY, S. B.</au><au>SPINDLER, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CORRIGENDA AND ADDENDA TO "FUNDAMENTALITY OF A CUBIC UNIT u FOR ℤ[u]"</atitle><jtitle>Mathematics of computation</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>81</volume><issue>280</issue><spage>2383</spage><epage>2387</epage><pages>2383-2387</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>Due to a certain ambiguity present in section 3 of [E. Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33-55], it became necessary to amend a crucial definition and a few proofs appearing in our article Fundamentality of a cubic unit u for ℤ[u]. Here, the necessary corrections are provided.</abstract><pub>American Mathematical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2012-10, Vol.81 (280), p.2383-2387
issn 0025-5718
1088-6842
language eng
recordid cdi_jstor_primary_23267952
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications
subjects Ambiguity
Critical points
Mathematical theorems
title CORRIGENDA AND ADDENDA TO "FUNDAMENTALITY OF A CUBIC UNIT u FOR ℤ[u]"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CORRIGENDA%20AND%20ADDENDA%20TO%20%22FUNDAMENTALITY%20OF%20A%20CUBIC%20UNIT%20u%20FOR%20%E2%84%A4%5Bu%5D%22&rft.jtitle=Mathematics%20of%20computation&rft.au=BEERS,%20J.&rft.date=2012-10-01&rft.volume=81&rft.issue=280&rft.spage=2383&rft.epage=2387&rft.pages=2383-2387&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/&rft_dat=%3Cjstor%3E23267952%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23267952&rfr_iscdi=true