Ionic strength-dependent persistence lengths of single-stranded RNA and DNA

Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-01, Vol.109 (3), p.799-804
Hauptverfasser: Chen, Huimin, Meisburger, Steve P, Pabit, Suzette A, Sutton, Julie L, Webb, Watt W, Pollack, Lois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 804
container_issue 3
container_start_page 799
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Chen, Huimin
Meisburger, Steve P
Pabit, Suzette A
Sutton, Julie L
Webb, Watt W
Pollack, Lois
description Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.
doi_str_mv 10.1073/pnas.1119057109
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_23077107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23077107</jstor_id><sourcerecordid>23077107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS1ERUPgzAlYcWkv246_1xekqFCoqIoE9Gw5tjfdaGNv7Q0S_z1eEhrgwMW29H7vzYwHoRcYzjBIej4Ek88wxgq4xKAeoVk5cS2YgsdoBkBk3TDCjtHTnNcAoHgDT9AxIQSoknSGPl3F0Nkqj8mH1XhXOz_44HwYq8Gn3OXRB-ur_peYq9hWuQur3tfFYArnqi83i6q8qnc3i2foqDV99s_39xzdXr7_dvGxvv784epicV1bgZuxJthzgZV3bGmIYI60BjhWCrB0XEolXEM550YsuTOSYEkFt9J6y8psYCWdo7e73GG73HhnS7fJ9HpI3cakHzqaTv-thO5Or-J3TYmcfqoEnOwDUrzf-jzqTZet73sTfNxmrYhoGszkVOr0vyQWgnImBIiCvvkHXcdtCuUjtMKiUZRJWqDzHWRTzDn59qFrDHraqJ42qg8bLY5Xfw77wP9eYQFe7oHJeYhTmmqp1EFf5zGmg5-ClFPFOXq901sTtVmlLuvbrwQwAyhNUE7oT_AVt5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916893473</pqid></control><display><type>article</type><title>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Huimin ; Meisburger, Steve P ; Pabit, Suzette A ; Sutton, Julie L ; Webb, Watt W ; Pollack, Lois</creator><creatorcontrib>Chen, Huimin ; Meisburger, Steve P ; Pabit, Suzette A ; Sutton, Julie L ; Webb, Watt W ; Pollack, Lois</creatorcontrib><description>Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1119057109</identifier><identifier>PMID: 22203973</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Chemical bases ; Deoxyribonucleic acid ; DNA ; DNA, Single-Stranded - chemistry ; Electrostatics ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Ions ; Magnesium Chloride - pharmacology ; Models, Molecular ; Molecules ; Nucleic acids ; Osmolar Concentration ; Pliability - drug effects ; Polymers ; Ribonucleic acid ; RNA ; RNA - chemistry ; Salts ; Scattering, Small Angle ; single-stranded DNA ; Sodium Chloride - pharmacology ; translation (genetics) ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-01, Vol.109 (3), p.799-804</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 17, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</citedby><cites>FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23077107$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23077107$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22203973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Meisburger, Steve P</creatorcontrib><creatorcontrib>Pabit, Suzette A</creatorcontrib><creatorcontrib>Sutton, Julie L</creatorcontrib><creatorcontrib>Webb, Watt W</creatorcontrib><creatorcontrib>Pollack, Lois</creatorcontrib><title>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.</description><subject>Biological Sciences</subject><subject>Chemical bases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Electrostatics</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Ions</subject><subject>Magnesium Chloride - pharmacology</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Nucleic acids</subject><subject>Osmolar Concentration</subject><subject>Pliability - drug effects</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>Salts</subject><subject>Scattering, Small Angle</subject><subject>single-stranded DNA</subject><subject>Sodium Chloride - pharmacology</subject><subject>translation (genetics)</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS1ERUPgzAlYcWkv246_1xekqFCoqIoE9Gw5tjfdaGNv7Q0S_z1eEhrgwMW29H7vzYwHoRcYzjBIej4Ek88wxgq4xKAeoVk5cS2YgsdoBkBk3TDCjtHTnNcAoHgDT9AxIQSoknSGPl3F0Nkqj8mH1XhXOz_44HwYq8Gn3OXRB-ur_peYq9hWuQur3tfFYArnqi83i6q8qnc3i2foqDV99s_39xzdXr7_dvGxvv784epicV1bgZuxJthzgZV3bGmIYI60BjhWCrB0XEolXEM550YsuTOSYEkFt9J6y8psYCWdo7e73GG73HhnS7fJ9HpI3cakHzqaTv-thO5Or-J3TYmcfqoEnOwDUrzf-jzqTZet73sTfNxmrYhoGszkVOr0vyQWgnImBIiCvvkHXcdtCuUjtMKiUZRJWqDzHWRTzDn59qFrDHraqJ42qg8bLY5Xfw77wP9eYQFe7oHJeYhTmmqp1EFf5zGmg5-ClFPFOXq901sTtVmlLuvbrwQwAyhNUE7oT_AVt5U</recordid><startdate>20120117</startdate><enddate>20120117</enddate><creator>Chen, Huimin</creator><creator>Meisburger, Steve P</creator><creator>Pabit, Suzette A</creator><creator>Sutton, Julie L</creator><creator>Webb, Watt W</creator><creator>Pollack, Lois</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120117</creationdate><title>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</title><author>Chen, Huimin ; Meisburger, Steve P ; Pabit, Suzette A ; Sutton, Julie L ; Webb, Watt W ; Pollack, Lois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological Sciences</topic><topic>Chemical bases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Electrostatics</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Ions</topic><topic>Magnesium Chloride - pharmacology</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Nucleic acids</topic><topic>Osmolar Concentration</topic><topic>Pliability - drug effects</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>Salts</topic><topic>Scattering, Small Angle</topic><topic>single-stranded DNA</topic><topic>Sodium Chloride - pharmacology</topic><topic>translation (genetics)</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Meisburger, Steve P</creatorcontrib><creatorcontrib>Pabit, Suzette A</creatorcontrib><creatorcontrib>Sutton, Julie L</creatorcontrib><creatorcontrib>Webb, Watt W</creatorcontrib><creatorcontrib>Pollack, Lois</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huimin</au><au>Meisburger, Steve P</au><au>Pabit, Suzette A</au><au>Sutton, Julie L</au><au>Webb, Watt W</au><au>Pollack, Lois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-01-17</date><risdate>2012</risdate><volume>109</volume><issue>3</issue><spage>799</spage><epage>804</epage><pages>799-804</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22203973</pmid><doi>10.1073/pnas.1119057109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-01, Vol.109 (3), p.799-804
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_23077107
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Chemical bases
Deoxyribonucleic acid
DNA
DNA, Single-Stranded - chemistry
Electrostatics
Fluorescence
Fluorescence Resonance Energy Transfer
Ions
Magnesium Chloride - pharmacology
Models, Molecular
Molecules
Nucleic acids
Osmolar Concentration
Pliability - drug effects
Polymers
Ribonucleic acid
RNA
RNA - chemistry
Salts
Scattering, Small Angle
single-stranded DNA
Sodium Chloride - pharmacology
translation (genetics)
X-Ray Diffraction
title Ionic strength-dependent persistence lengths of single-stranded RNA and DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20strength-dependent%20persistence%20lengths%20of%20single-stranded%20RNA%20and%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chen,%20Huimin&rft.date=2012-01-17&rft.volume=109&rft.issue=3&rft.spage=799&rft.epage=804&rft.pages=799-804&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1119057109&rft_dat=%3Cjstor_pubme%3E23077107%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916893473&rft_id=info:pmid/22203973&rft_jstor_id=23077107&rfr_iscdi=true