Ionic strength-dependent persistence lengths of single-stranded RNA and DNA
Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-01, Vol.109 (3), p.799-804 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 804 |
---|---|
container_issue | 3 |
container_start_page | 799 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Chen, Huimin Meisburger, Steve P Pabit, Suzette A Sutton, Julie L Webb, Watt W Pollack, Lois |
description | Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo. |
doi_str_mv | 10.1073/pnas.1119057109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_23077107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23077107</jstor_id><sourcerecordid>23077107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS1ERUPgzAlYcWkv246_1xekqFCoqIoE9Gw5tjfdaGNv7Q0S_z1eEhrgwMW29H7vzYwHoRcYzjBIej4Ek88wxgq4xKAeoVk5cS2YgsdoBkBk3TDCjtHTnNcAoHgDT9AxIQSoknSGPl3F0Nkqj8mH1XhXOz_44HwYq8Gn3OXRB-ur_peYq9hWuQur3tfFYArnqi83i6q8qnc3i2foqDV99s_39xzdXr7_dvGxvv784epicV1bgZuxJthzgZV3bGmIYI60BjhWCrB0XEolXEM550YsuTOSYEkFt9J6y8psYCWdo7e73GG73HhnS7fJ9HpI3cakHzqaTv-thO5Or-J3TYmcfqoEnOwDUrzf-jzqTZet73sTfNxmrYhoGszkVOr0vyQWgnImBIiCvvkHXcdtCuUjtMKiUZRJWqDzHWRTzDn59qFrDHraqJ42qg8bLY5Xfw77wP9eYQFe7oHJeYhTmmqp1EFf5zGmg5-ClFPFOXq901sTtVmlLuvbrwQwAyhNUE7oT_AVt5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916893473</pqid></control><display><type>article</type><title>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Huimin ; Meisburger, Steve P ; Pabit, Suzette A ; Sutton, Julie L ; Webb, Watt W ; Pollack, Lois</creator><creatorcontrib>Chen, Huimin ; Meisburger, Steve P ; Pabit, Suzette A ; Sutton, Julie L ; Webb, Watt W ; Pollack, Lois</creatorcontrib><description>Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1119057109</identifier><identifier>PMID: 22203973</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Chemical bases ; Deoxyribonucleic acid ; DNA ; DNA, Single-Stranded - chemistry ; Electrostatics ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Ions ; Magnesium Chloride - pharmacology ; Models, Molecular ; Molecules ; Nucleic acids ; Osmolar Concentration ; Pliability - drug effects ; Polymers ; Ribonucleic acid ; RNA ; RNA - chemistry ; Salts ; Scattering, Small Angle ; single-stranded DNA ; Sodium Chloride - pharmacology ; translation (genetics) ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-01, Vol.109 (3), p.799-804</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 17, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</citedby><cites>FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23077107$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23077107$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22203973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Meisburger, Steve P</creatorcontrib><creatorcontrib>Pabit, Suzette A</creatorcontrib><creatorcontrib>Sutton, Julie L</creatorcontrib><creatorcontrib>Webb, Watt W</creatorcontrib><creatorcontrib>Pollack, Lois</creatorcontrib><title>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.</description><subject>Biological Sciences</subject><subject>Chemical bases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Electrostatics</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Ions</subject><subject>Magnesium Chloride - pharmacology</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Nucleic acids</subject><subject>Osmolar Concentration</subject><subject>Pliability - drug effects</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>Salts</subject><subject>Scattering, Small Angle</subject><subject>single-stranded DNA</subject><subject>Sodium Chloride - pharmacology</subject><subject>translation (genetics)</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS1ERUPgzAlYcWkv246_1xekqFCoqIoE9Gw5tjfdaGNv7Q0S_z1eEhrgwMW29H7vzYwHoRcYzjBIej4Ek88wxgq4xKAeoVk5cS2YgsdoBkBk3TDCjtHTnNcAoHgDT9AxIQSoknSGPl3F0Nkqj8mH1XhXOz_44HwYq8Gn3OXRB-ur_peYq9hWuQur3tfFYArnqi83i6q8qnc3i2foqDV99s_39xzdXr7_dvGxvv784epicV1bgZuxJthzgZV3bGmIYI60BjhWCrB0XEolXEM550YsuTOSYEkFt9J6y8psYCWdo7e73GG73HhnS7fJ9HpI3cakHzqaTv-thO5Or-J3TYmcfqoEnOwDUrzf-jzqTZet73sTfNxmrYhoGszkVOr0vyQWgnImBIiCvvkHXcdtCuUjtMKiUZRJWqDzHWRTzDn59qFrDHraqJ42qg8bLY5Xfw77wP9eYQFe7oHJeYhTmmqp1EFf5zGmg5-ClFPFOXq901sTtVmlLuvbrwQwAyhNUE7oT_AVt5U</recordid><startdate>20120117</startdate><enddate>20120117</enddate><creator>Chen, Huimin</creator><creator>Meisburger, Steve P</creator><creator>Pabit, Suzette A</creator><creator>Sutton, Julie L</creator><creator>Webb, Watt W</creator><creator>Pollack, Lois</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120117</creationdate><title>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</title><author>Chen, Huimin ; Meisburger, Steve P ; Pabit, Suzette A ; Sutton, Julie L ; Webb, Watt W ; Pollack, Lois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-21e5619ed4ba264d2fa05199017d57796d83555a6b5da7217365c7cec41090c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological Sciences</topic><topic>Chemical bases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Electrostatics</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Ions</topic><topic>Magnesium Chloride - pharmacology</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Nucleic acids</topic><topic>Osmolar Concentration</topic><topic>Pliability - drug effects</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>Salts</topic><topic>Scattering, Small Angle</topic><topic>single-stranded DNA</topic><topic>Sodium Chloride - pharmacology</topic><topic>translation (genetics)</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Meisburger, Steve P</creatorcontrib><creatorcontrib>Pabit, Suzette A</creatorcontrib><creatorcontrib>Sutton, Julie L</creatorcontrib><creatorcontrib>Webb, Watt W</creatorcontrib><creatorcontrib>Pollack, Lois</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huimin</au><au>Meisburger, Steve P</au><au>Pabit, Suzette A</au><au>Sutton, Julie L</au><au>Webb, Watt W</au><au>Pollack, Lois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic strength-dependent persistence lengths of single-stranded RNA and DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-01-17</date><risdate>2012</risdate><volume>109</volume><issue>3</issue><spage>799</spage><epage>804</epage><pages>799-804</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (lp) of ssRNA. We observe valence and ionic strength-dependent differences in lp in a direct comparison between 40-mers of deoxythymidylate (dT40) and uridylate (rU40) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22203973</pmid><doi>10.1073/pnas.1119057109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-01, Vol.109 (3), p.799-804 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_23077107 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Chemical bases Deoxyribonucleic acid DNA DNA, Single-Stranded - chemistry Electrostatics Fluorescence Fluorescence Resonance Energy Transfer Ions Magnesium Chloride - pharmacology Models, Molecular Molecules Nucleic acids Osmolar Concentration Pliability - drug effects Polymers Ribonucleic acid RNA RNA - chemistry Salts Scattering, Small Angle single-stranded DNA Sodium Chloride - pharmacology translation (genetics) X-Ray Diffraction |
title | Ionic strength-dependent persistence lengths of single-stranded RNA and DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20strength-dependent%20persistence%20lengths%20of%20single-stranded%20RNA%20and%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chen,%20Huimin&rft.date=2012-01-17&rft.volume=109&rft.issue=3&rft.spage=799&rft.epage=804&rft.pages=799-804&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1119057109&rft_dat=%3Cjstor_pubme%3E23077107%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916893473&rft_id=info:pmid/22203973&rft_jstor_id=23077107&rfr_iscdi=true |