Templating efficiency of naked DNA
Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-07, Vol.107 (27), p.12074-12079 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12079 |
---|---|
container_issue | 27 |
container_start_page | 12074 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Kervio, Eric Hochgesand, Annette Steiner, Ulrich E. Richert, Clemens Piccirilli, Joseph A |
description | Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material. |
doi_str_mv | 10.1073/pnas.0914872107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_20724205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20724205</jstor_id><sourcerecordid>20724205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</originalsourceid><addsrcrecordid>eNqFkTtPwzAURi0EgvKYmUARC1Po9dtZkBBvCcECs3Xr2JCSJiVOkfj3uGopj4XJsn3u0Wd_hOxTOKGg-XDaYDyBggqjWTpYIwOadrkSBayTAQDTuRFMbJHtGMcAUEgDm2SLgZSioGpAjh79ZFpjXzXPmQ-hcpVv3EfWhqzBV19mF_dnu2QjYB393nLdIU9Xl4_nN_ndw_Xt-dld7qQSfY4UJYiR45QVXBleBnToKQ_oMQiOqkxxeAneKalHKXFpnIZgSoXGlBr5DjldeKez0cSXzjd9h7WddtUEuw_bYmV_3zTVi31u3y0rgArOkuB4Kejat5mPvZ1U0fm6xsa3s2i1FJJrpov_Sc6VlNLIRB79IcftrGvSP1gFqjCSKZqg4QJyXRtj58MqNAU778nOe7LfPaWJw59vXfFfxSQgWwLzyW-dtkxbykCLhBwskHHs2-6HQjORPPwTpBWhEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>606985261</pqid></control><display><type>article</type><title>Templating efficiency of naked DNA</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kervio, Eric ; Hochgesand, Annette ; Steiner, Ulrich E. ; Richert, Clemens ; Piccirilli, Joseph A</creator><creatorcontrib>Kervio, Eric ; Hochgesand, Annette ; Steiner, Ulrich E. ; Richert, Clemens ; Piccirilli, Joseph A</creatorcontrib><description>Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914872107</identifier><identifier>PMID: 20554916</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Binding sites ; Chemical bases ; Deoxyribonucleic acid ; DNA ; DNA - biosynthesis ; DNA - chemistry ; DNA - genetics ; DNA polymerase ; DNA Primers - genetics ; DNA Replication ; Enzymes ; Gene expression ; Kinetics ; Models, Chemical ; Models, Genetic ; Molecular Structure ; Monomers ; Nucleobases ; Nucleotides ; Oats ; Oligonucleotides ; Physical Sciences ; Protein synthesis ; Reactivity ; RNA ; Templates, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (27), p.12074-12079</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 6, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</citedby><cites>FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20724205$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20724205$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20554916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kervio, Eric</creatorcontrib><creatorcontrib>Hochgesand, Annette</creatorcontrib><creatorcontrib>Steiner, Ulrich E.</creatorcontrib><creatorcontrib>Richert, Clemens</creatorcontrib><creatorcontrib>Piccirilli, Joseph A</creatorcontrib><title>Templating efficiency of naked DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.</description><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Chemical bases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - biosynthesis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA polymerase</subject><subject>DNA Primers - genetics</subject><subject>DNA Replication</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Genetic</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Nucleobases</subject><subject>Nucleotides</subject><subject>Oats</subject><subject>Oligonucleotides</subject><subject>Physical Sciences</subject><subject>Protein synthesis</subject><subject>Reactivity</subject><subject>RNA</subject><subject>Templates, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtPwzAURi0EgvKYmUARC1Po9dtZkBBvCcECs3Xr2JCSJiVOkfj3uGopj4XJsn3u0Wd_hOxTOKGg-XDaYDyBggqjWTpYIwOadrkSBayTAQDTuRFMbJHtGMcAUEgDm2SLgZSioGpAjh79ZFpjXzXPmQ-hcpVv3EfWhqzBV19mF_dnu2QjYB393nLdIU9Xl4_nN_ndw_Xt-dld7qQSfY4UJYiR45QVXBleBnToKQ_oMQiOqkxxeAneKalHKXFpnIZgSoXGlBr5DjldeKez0cSXzjd9h7WddtUEuw_bYmV_3zTVi31u3y0rgArOkuB4Kejat5mPvZ1U0fm6xsa3s2i1FJJrpov_Sc6VlNLIRB79IcftrGvSP1gFqjCSKZqg4QJyXRtj58MqNAU778nOe7LfPaWJw59vXfFfxSQgWwLzyW-dtkxbykCLhBwskHHs2-6HQjORPPwTpBWhEg</recordid><startdate>20100706</startdate><enddate>20100706</enddate><creator>Kervio, Eric</creator><creator>Hochgesand, Annette</creator><creator>Steiner, Ulrich E.</creator><creator>Richert, Clemens</creator><creator>Piccirilli, Joseph A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100706</creationdate><title>Templating efficiency of naked DNA</title><author>Kervio, Eric ; Hochgesand, Annette ; Steiner, Ulrich E. ; Richert, Clemens ; Piccirilli, Joseph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Chemical bases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - biosynthesis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA polymerase</topic><topic>DNA Primers - genetics</topic><topic>DNA Replication</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Genetic</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Nucleobases</topic><topic>Nucleotides</topic><topic>Oats</topic><topic>Oligonucleotides</topic><topic>Physical Sciences</topic><topic>Protein synthesis</topic><topic>Reactivity</topic><topic>RNA</topic><topic>Templates, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kervio, Eric</creatorcontrib><creatorcontrib>Hochgesand, Annette</creatorcontrib><creatorcontrib>Steiner, Ulrich E.</creatorcontrib><creatorcontrib>Richert, Clemens</creatorcontrib><creatorcontrib>Piccirilli, Joseph A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kervio, Eric</au><au>Hochgesand, Annette</au><au>Steiner, Ulrich E.</au><au>Richert, Clemens</au><au>Piccirilli, Joseph A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Templating efficiency of naked DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-07-06</date><risdate>2010</risdate><volume>107</volume><issue>27</issue><spage>12074</spage><epage>12079</epage><pages>12074-12079</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20554916</pmid><doi>10.1073/pnas.0914872107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (27), p.12074-12079 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_20724205 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Base Sequence Binding sites Chemical bases Deoxyribonucleic acid DNA DNA - biosynthesis DNA - chemistry DNA - genetics DNA polymerase DNA Primers - genetics DNA Replication Enzymes Gene expression Kinetics Models, Chemical Models, Genetic Molecular Structure Monomers Nucleobases Nucleotides Oats Oligonucleotides Physical Sciences Protein synthesis Reactivity RNA Templates, Genetic |
title | Templating efficiency of naked DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Templating%20efficiency%20of%20naked%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kervio,%20Eric&rft.date=2010-07-06&rft.volume=107&rft.issue=27&rft.spage=12074&rft.epage=12079&rft.pages=12074-12079&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914872107&rft_dat=%3Cjstor_pubme%3E20724205%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=606985261&rft_id=info:pmid/20554916&rft_jstor_id=20724205&rfr_iscdi=true |