Templating efficiency of naked DNA

Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-07, Vol.107 (27), p.12074-12079
Hauptverfasser: Kervio, Eric, Hochgesand, Annette, Steiner, Ulrich E., Richert, Clemens, Piccirilli, Joseph A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12079
container_issue 27
container_start_page 12074
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Kervio, Eric
Hochgesand, Annette
Steiner, Ulrich E.
Richert, Clemens
Piccirilli, Joseph A
description Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.
doi_str_mv 10.1073/pnas.0914872107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_20724205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20724205</jstor_id><sourcerecordid>20724205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</originalsourceid><addsrcrecordid>eNqFkTtPwzAURi0EgvKYmUARC1Po9dtZkBBvCcECs3Xr2JCSJiVOkfj3uGopj4XJsn3u0Wd_hOxTOKGg-XDaYDyBggqjWTpYIwOadrkSBayTAQDTuRFMbJHtGMcAUEgDm2SLgZSioGpAjh79ZFpjXzXPmQ-hcpVv3EfWhqzBV19mF_dnu2QjYB393nLdIU9Xl4_nN_ndw_Xt-dld7qQSfY4UJYiR45QVXBleBnToKQ_oMQiOqkxxeAneKalHKXFpnIZgSoXGlBr5DjldeKez0cSXzjd9h7WddtUEuw_bYmV_3zTVi31u3y0rgArOkuB4Kejat5mPvZ1U0fm6xsa3s2i1FJJrpov_Sc6VlNLIRB79IcftrGvSP1gFqjCSKZqg4QJyXRtj58MqNAU778nOe7LfPaWJw59vXfFfxSQgWwLzyW-dtkxbykCLhBwskHHs2-6HQjORPPwTpBWhEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>606985261</pqid></control><display><type>article</type><title>Templating efficiency of naked DNA</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kervio, Eric ; Hochgesand, Annette ; Steiner, Ulrich E. ; Richert, Clemens ; Piccirilli, Joseph A</creator><creatorcontrib>Kervio, Eric ; Hochgesand, Annette ; Steiner, Ulrich E. ; Richert, Clemens ; Piccirilli, Joseph A</creatorcontrib><description>Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914872107</identifier><identifier>PMID: 20554916</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Binding sites ; Chemical bases ; Deoxyribonucleic acid ; DNA ; DNA - biosynthesis ; DNA - chemistry ; DNA - genetics ; DNA polymerase ; DNA Primers - genetics ; DNA Replication ; Enzymes ; Gene expression ; Kinetics ; Models, Chemical ; Models, Genetic ; Molecular Structure ; Monomers ; Nucleobases ; Nucleotides ; Oats ; Oligonucleotides ; Physical Sciences ; Protein synthesis ; Reactivity ; RNA ; Templates, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (27), p.12074-12079</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 6, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</citedby><cites>FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20724205$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20724205$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20554916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kervio, Eric</creatorcontrib><creatorcontrib>Hochgesand, Annette</creatorcontrib><creatorcontrib>Steiner, Ulrich E.</creatorcontrib><creatorcontrib>Richert, Clemens</creatorcontrib><creatorcontrib>Piccirilli, Joseph A</creatorcontrib><title>Templating efficiency of naked DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.</description><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Chemical bases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - biosynthesis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA polymerase</subject><subject>DNA Primers - genetics</subject><subject>DNA Replication</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Genetic</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Nucleobases</subject><subject>Nucleotides</subject><subject>Oats</subject><subject>Oligonucleotides</subject><subject>Physical Sciences</subject><subject>Protein synthesis</subject><subject>Reactivity</subject><subject>RNA</subject><subject>Templates, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtPwzAURi0EgvKYmUARC1Po9dtZkBBvCcECs3Xr2JCSJiVOkfj3uGopj4XJsn3u0Wd_hOxTOKGg-XDaYDyBggqjWTpYIwOadrkSBayTAQDTuRFMbJHtGMcAUEgDm2SLgZSioGpAjh79ZFpjXzXPmQ-hcpVv3EfWhqzBV19mF_dnu2QjYB393nLdIU9Xl4_nN_ndw_Xt-dld7qQSfY4UJYiR45QVXBleBnToKQ_oMQiOqkxxeAneKalHKXFpnIZgSoXGlBr5DjldeKez0cSXzjd9h7WddtUEuw_bYmV_3zTVi31u3y0rgArOkuB4Kejat5mPvZ1U0fm6xsa3s2i1FJJrpov_Sc6VlNLIRB79IcftrGvSP1gFqjCSKZqg4QJyXRtj58MqNAU778nOe7LfPaWJw59vXfFfxSQgWwLzyW-dtkxbykCLhBwskHHs2-6HQjORPPwTpBWhEg</recordid><startdate>20100706</startdate><enddate>20100706</enddate><creator>Kervio, Eric</creator><creator>Hochgesand, Annette</creator><creator>Steiner, Ulrich E.</creator><creator>Richert, Clemens</creator><creator>Piccirilli, Joseph A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100706</creationdate><title>Templating efficiency of naked DNA</title><author>Kervio, Eric ; Hochgesand, Annette ; Steiner, Ulrich E. ; Richert, Clemens ; Piccirilli, Joseph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-a1a504bc31293683dfacae13faeaf43a6d0023d0ec657b148d8c70f8d6a88d7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Chemical bases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - biosynthesis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA polymerase</topic><topic>DNA Primers - genetics</topic><topic>DNA Replication</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Genetic</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Nucleobases</topic><topic>Nucleotides</topic><topic>Oats</topic><topic>Oligonucleotides</topic><topic>Physical Sciences</topic><topic>Protein synthesis</topic><topic>Reactivity</topic><topic>RNA</topic><topic>Templates, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kervio, Eric</creatorcontrib><creatorcontrib>Hochgesand, Annette</creatorcontrib><creatorcontrib>Steiner, Ulrich E.</creatorcontrib><creatorcontrib>Richert, Clemens</creatorcontrib><creatorcontrib>Piccirilli, Joseph A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kervio, Eric</au><au>Hochgesand, Annette</au><au>Steiner, Ulrich E.</au><au>Richert, Clemens</au><au>Piccirilli, Joseph A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Templating efficiency of naked DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-07-06</date><risdate>2010</risdate><volume>107</volume><issue>27</issue><spage>12074</spage><epage>12079</epage><pages>12074-12079</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with ≥93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows ≥72% of the correct extension product in all cases, and ≥90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20554916</pmid><doi>10.1073/pnas.0914872107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (27), p.12074-12079
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_20724205
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Base Sequence
Binding sites
Chemical bases
Deoxyribonucleic acid
DNA
DNA - biosynthesis
DNA - chemistry
DNA - genetics
DNA polymerase
DNA Primers - genetics
DNA Replication
Enzymes
Gene expression
Kinetics
Models, Chemical
Models, Genetic
Molecular Structure
Monomers
Nucleobases
Nucleotides
Oats
Oligonucleotides
Physical Sciences
Protein synthesis
Reactivity
RNA
Templates, Genetic
title Templating efficiency of naked DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Templating%20efficiency%20of%20naked%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kervio,%20Eric&rft.date=2010-07-06&rft.volume=107&rft.issue=27&rft.spage=12074&rft.epage=12079&rft.pages=12074-12079&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914872107&rft_dat=%3Cjstor_pubme%3E20724205%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=606985261&rft_id=info:pmid/20554916&rft_jstor_id=20724205&rfr_iscdi=true