Deconvolution by Simulation

Given samples (x₁,...,$x_{m}$) and (z₁,...,$z_{n}$) which we believe are independent realizations of random variables X and Z respectively, where we further believe that Z = X + Y with Y independent of X, the problem is to estimate the distribution of Y. We present a new method for doing this, invol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lecture notes-monograph series 2007-01, Vol.54, p.1-11
1. Verfasser: Mallows, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Lecture notes-monograph series
container_volume 54
creator Mallows, Colin
description Given samples (x₁,...,$x_{m}$) and (z₁,...,$z_{n}$) which we believe are independent realizations of random variables X and Z respectively, where we further believe that Z = X + Y with Y independent of X, the problem is to estimate the distribution of Y. We present a new method for doing this, involving simulation. Experiments suggest that the method provides useful estimates.
doi_str_mv 10.1214/074921707000000021
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_20461455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20461455</jstor_id><sourcerecordid>20461455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1731-f79018aa4a6450ae626cb3c4ee5e2544369245fce196afa349ed0a41caefbb3e3</originalsourceid><addsrcrecordid>eNotjMtqAkEQRXsRwecPJAT8gTFV3dXd9lJ8RRjIIslaajrVMDI6YUYF_14GvZvDOYur1CvCDDXSB3gKGj14eEzjixp0MetqXw3b9gDg9Nz5gXpbSaxP17q6nMv6NC1u0-_yeKm4s7HqJa5amTw5Ur-b9c_yM8u_trvlIs8ieoNZ8gFwzkzsyAKL0y4WJpKIFW2JjAuabIqCwXFiQ0H-gAkjSyoKI2ak3h-_h_ZcN_v_pjxyc9trIIdkrbkDT_Q6PQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deconvolution by Simulation</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Open Access</source><source>Project Euclid Complete</source><creator>Mallows, Colin</creator><creatorcontrib>Mallows, Colin</creatorcontrib><description>Given samples (x₁,...,$x_{m}$) and (z₁,...,$z_{n}$) which we believe are independent realizations of random variables X and Z respectively, where we further believe that Z = X + Y with Y independent of X, the problem is to estimate the distribution of Y. We present a new method for doing this, involving simulation. Experiments suggest that the method provides useful estimates.</description><identifier>ISSN: 0749-2170</identifier><identifier>DOI: 10.1214/074921707000000021</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Estimation methods ; Gaussian distributions ; Hyperlinks ; Mathematical functions ; Mathematical vectors ; Outliers ; Random variables ; Random walk ; Statistics</subject><ispartof>Lecture notes-monograph series, 2007-01, Vol.54, p.1-11</ispartof><rights>Copyright 2007 Institute of Mathematical Statistics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1731-f79018aa4a6450ae626cb3c4ee5e2544369245fce196afa349ed0a41caefbb3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20461455$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20461455$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Mallows, Colin</creatorcontrib><title>Deconvolution by Simulation</title><title>Lecture notes-monograph series</title><description>Given samples (x₁,...,$x_{m}$) and (z₁,...,$z_{n}$) which we believe are independent realizations of random variables X and Z respectively, where we further believe that Z = X + Y with Y independent of X, the problem is to estimate the distribution of Y. We present a new method for doing this, involving simulation. Experiments suggest that the method provides useful estimates.</description><subject>Estimation methods</subject><subject>Gaussian distributions</subject><subject>Hyperlinks</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Outliers</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Statistics</subject><issn>0749-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjMtqAkEQRXsRwecPJAT8gTFV3dXd9lJ8RRjIIslaajrVMDI6YUYF_14GvZvDOYur1CvCDDXSB3gKGj14eEzjixp0MetqXw3b9gDg9Nz5gXpbSaxP17q6nMv6NC1u0-_yeKm4s7HqJa5amTw5Ur-b9c_yM8u_trvlIs8ieoNZ8gFwzkzsyAKL0y4WJpKIFW2JjAuabIqCwXFiQ0H-gAkjSyoKI2ak3h-_h_ZcN_v_pjxyc9trIIdkrbkDT_Q6PQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Mallows, Colin</creator><general>Institute of Mathematical Statistics</general><scope/></search><sort><creationdate>20070101</creationdate><title>Deconvolution by Simulation</title><author>Mallows, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1731-f79018aa4a6450ae626cb3c4ee5e2544369245fce196afa349ed0a41caefbb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Estimation methods</topic><topic>Gaussian distributions</topic><topic>Hyperlinks</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Outliers</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Mallows, Colin</creatorcontrib><jtitle>Lecture notes-monograph series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallows, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvolution by Simulation</atitle><jtitle>Lecture notes-monograph series</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>54</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0749-2170</issn><abstract>Given samples (x₁,...,$x_{m}$) and (z₁,...,$z_{n}$) which we believe are independent realizations of random variables X and Z respectively, where we further believe that Z = X + Y with Y independent of X, the problem is to estimate the distribution of Y. We present a new method for doing this, involving simulation. Experiments suggest that the method provides useful estimates.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/074921707000000021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-2170
ispartof Lecture notes-monograph series, 2007-01, Vol.54, p.1-11
issn 0749-2170
language eng
recordid cdi_jstor_primary_20461455
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Open Access; Project Euclid Complete
subjects Estimation methods
Gaussian distributions
Hyperlinks
Mathematical functions
Mathematical vectors
Outliers
Random variables
Random walk
Statistics
title Deconvolution by Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvolution%20by%20Simulation&rft.jtitle=Lecture%20notes-monograph%20series&rft.au=Mallows,%20Colin&rft.date=2007-01-01&rft.volume=54&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0749-2170&rft_id=info:doi/10.1214/074921707000000021&rft_dat=%3Cjstor%3E20461455%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20461455&rfr_iscdi=true