Derivations and Prime Ideals
We prove (under suitable characteristic restrictions) that if we have two derivations on a ring such that the product maps the ring into a prime ideal, then one of the derivations maps the ring into the prime ideal. We also prove that, if the product of two derivations leaves a prime ideal invariant...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Royal Irish Academy 1998-12, Vol.98A (2), p.223-225 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Mathematical proceedings of the Royal Irish Academy |
container_volume | 98A |
creator | Creedon, T. |
description | We prove (under suitable characteristic restrictions) that if we have two derivations on a ring such that the product maps the ring into a prime ideal, then one of the derivations maps the ring into the prime ideal. We also prove that, if the product of two derivations leaves a prime ideal invariant, then one of the derivations must leave the prime ideal invariant, and that a derivation leaves a semiprime ideal invariant if and only if some iterate of the derivation leaves the semiprime ideal invariant. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_20459734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20459734</jstor_id><sourcerecordid>20459734</sourcerecordid><originalsourceid>FETCH-jstor_primary_204597343</originalsourceid><addsrcrecordid>eNpjYeA0NLY01jU3tDTnYOAqLs4yMDCyMDcx4mSQcUktyixLLMnMzytWSMxLUQgoysxNVfBMSU3MKeZhYE0DUqm8UJqbQdbNNcTZQzeruCS_KL4AqDSxqDLeyMDE1NLc2MSYkDwAuJ8mhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivations and Prime Ideals</title><source>Jstor Complete Legacy</source><creator>Creedon, T.</creator><creatorcontrib>Creedon, T.</creatorcontrib><description>We prove (under suitable characteristic restrictions) that if we have two derivations on a ring such that the product maps the ring into a prime ideal, then one of the derivations maps the ring into the prime ideal. We also prove that, if the product of two derivations leaves a prime ideal invariant, then one of the derivations must leave the prime ideal invariant, and that a derivation leaves a semiprime ideal invariant if and only if some iterate of the derivation leaves the semiprime ideal invariant.</description><identifier>ISSN: 1393-7197</identifier><language>eng</language><publisher>Royal Irish Academy</publisher><subject>Algebra ; Integers ; Logical proofs ; Mathematical rings ; Mathematical theorems</subject><ispartof>Mathematical proceedings of the Royal Irish Academy, 1998-12, Vol.98A (2), p.223-225</ispartof><rights>Copyright Royal Irish Academy</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20459734$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20459734$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,57992,58225</link.rule.ids></links><search><creatorcontrib>Creedon, T.</creatorcontrib><title>Derivations and Prime Ideals</title><title>Mathematical proceedings of the Royal Irish Academy</title><description>We prove (under suitable characteristic restrictions) that if we have two derivations on a ring such that the product maps the ring into a prime ideal, then one of the derivations maps the ring into the prime ideal. We also prove that, if the product of two derivations leaves a prime ideal invariant, then one of the derivations must leave the prime ideal invariant, and that a derivation leaves a semiprime ideal invariant if and only if some iterate of the derivation leaves the semiprime ideal invariant.</description><subject>Algebra</subject><subject>Integers</subject><subject>Logical proofs</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><issn>1393-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NLY01jU3tDTnYOAqLs4yMDCyMDcx4mSQcUktyixLLMnMzytWSMxLUQgoysxNVfBMSU3MKeZhYE0DUqm8UJqbQdbNNcTZQzeruCS_KL4AqDSxqDLeyMDE1NLc2MSYkDwAuJ8mhA</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Creedon, T.</creator><general>Royal Irish Academy</general><scope/></search><sort><creationdate>19981201</creationdate><title>Derivations and Prime Ideals</title><author>Creedon, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_204597343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algebra</topic><topic>Integers</topic><topic>Logical proofs</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creedon, T.</creatorcontrib><jtitle>Mathematical proceedings of the Royal Irish Academy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creedon, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivations and Prime Ideals</atitle><jtitle>Mathematical proceedings of the Royal Irish Academy</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>98A</volume><issue>2</issue><spage>223</spage><epage>225</epage><pages>223-225</pages><issn>1393-7197</issn><abstract>We prove (under suitable characteristic restrictions) that if we have two derivations on a ring such that the product maps the ring into a prime ideal, then one of the derivations maps the ring into the prime ideal. We also prove that, if the product of two derivations leaves a prime ideal invariant, then one of the derivations must leave the prime ideal invariant, and that a derivation leaves a semiprime ideal invariant if and only if some iterate of the derivation leaves the semiprime ideal invariant.</abstract><pub>Royal Irish Academy</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1393-7197 |
ispartof | Mathematical proceedings of the Royal Irish Academy, 1998-12, Vol.98A (2), p.223-225 |
issn | 1393-7197 |
language | eng |
recordid | cdi_jstor_primary_20459734 |
source | Jstor Complete Legacy |
subjects | Algebra Integers Logical proofs Mathematical rings Mathematical theorems |
title | Derivations and Prime Ideals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivations%20and%20Prime%20Ideals&rft.jtitle=Mathematical%20proceedings%20of%20the%20Royal%20Irish%20Academy&rft.au=Creedon,%20T.&rft.date=1998-12-01&rft.volume=98A&rft.issue=2&rft.spage=223&rft.epage=225&rft.pages=223-225&rft.issn=1393-7197&rft_id=info:doi/&rft_dat=%3Cjstor%3E20459734%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20459734&rfr_iscdi=true |