Poisson's ratio in cubic materials

Expressions are given for the maximum and minimum values of Poisson's ratio ν for materials with cubic symmetry. Values less than −1 occur if and only if the maximum shear modulus is associated with the cube axis and is at least 25 times the value of the minimum shear modulus. Large values of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2006-11, Vol.462 (2075), p.3385-3405
1. Verfasser: Norris, Andrew N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3405
container_issue 2075
container_start_page 3385
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 462
creator Norris, Andrew N
description Expressions are given for the maximum and minimum values of Poisson's ratio ν for materials with cubic symmetry. Values less than −1 occur if and only if the maximum shear modulus is associated with the cube axis and is at least 25 times the value of the minimum shear modulus. Large values of occur in directions at which the Young modulus is approximately equal to one half of its 111 value. Such directions, by their nature, are very close to 111. Application to data for cubic crystals indicates that certain Indium Thallium alloys simultaneously exhibit Poisson's ratio less than −1 and greater than +2.
doi_str_mv 10.1098/rspa.2006.1726
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_20209073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20209073</jstor_id><sourcerecordid>20209073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7e84c675d95ce627bbb41d637d0ed61b438aaaeed78d60efdef5d353f5c1a9ed3</originalsourceid><addsrcrecordid>eNp9j0lPwzAQhSMEEqVw5YZUceGU4N3JDSg7lUBsV8uxHerSxpGdCvrvcRRUqQc4zYzefDPvJckhBBkERX7qQyMzBADLIEdsKxlAwmGKCsK2Y48ZSSlAcDfZC2EGAChozgfJ8ZOzIbj6JIy8bK0b2XqklqVVo4VsjbdyHvaTnSoWc_Bbh8nb9dXr-DadPN7cjc8nqSIEtyk3OVGMU11QZRjiZVkSqBnmGhjNYElwLqU0RvNcM2AqbSqqMcUVVVAWRuNhkvV3lXcheFOJxtuF9CsBgegSii6h6BKKLmEEcA94t4rGnLKmXYmZW_o6jn9TRz01C63z6x8IIFAAjqOe9roNrfle69J_CsYxp-I9J-Iyf74vHi6AeIn7qN-f2o_pl_VGbNiJQ-ODFISh-CPiGOc0Qmf_Qp1l5erW1O0mKarlfC4aXeEfRtWXsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poisson's ratio in cubic materials</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Norris, Andrew N</creator><creatorcontrib>Norris, Andrew N</creatorcontrib><description>Expressions are given for the maximum and minimum values of Poisson's ratio ν for materials with cubic symmetry. Values less than −1 occur if and only if the maximum shear modulus is associated with the cube axis and is at least 25 times the value of the minimum shear modulus. Large values of occur in directions at which the Young modulus is approximately equal to one half of its 111 value. Such directions, by their nature, are very close to 111. Application to data for cubic crystals indicates that certain Indium Thallium alloys simultaneously exhibit Poisson's ratio less than −1 and greater than +2.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2006.1726</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Anisotropy ; Cubic crystals ; Cubic Symmetry ; Elastic anisotropy ; Extrema ; Mathematical minima ; Moduli of elasticity ; Poisson ratio ; Poisson's Ratio ; Shear modulus ; Triangles ; Vertices ; Youngs modulus</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2006-11, Vol.462 (2075), p.3385-3405</ispartof><rights>Copyright 2006 The Royal Society</rights><rights>2006 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7e84c675d95ce627bbb41d637d0ed61b438aaaeed78d60efdef5d353f5c1a9ed3</citedby><cites>FETCH-LOGICAL-c443t-7e84c675d95ce627bbb41d637d0ed61b438aaaeed78d60efdef5d353f5c1a9ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20209073$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20209073$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Norris, Andrew N</creatorcontrib><title>Poisson's ratio in cubic materials</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>PROC R SOC A</addtitle><description>Expressions are given for the maximum and minimum values of Poisson's ratio ν for materials with cubic symmetry. Values less than −1 occur if and only if the maximum shear modulus is associated with the cube axis and is at least 25 times the value of the minimum shear modulus. Large values of occur in directions at which the Young modulus is approximately equal to one half of its 111 value. Such directions, by their nature, are very close to 111. Application to data for cubic crystals indicates that certain Indium Thallium alloys simultaneously exhibit Poisson's ratio less than −1 and greater than +2.</description><subject>Anisotropy</subject><subject>Cubic crystals</subject><subject>Cubic Symmetry</subject><subject>Elastic anisotropy</subject><subject>Extrema</subject><subject>Mathematical minima</subject><subject>Moduli of elasticity</subject><subject>Poisson ratio</subject><subject>Poisson's Ratio</subject><subject>Shear modulus</subject><subject>Triangles</subject><subject>Vertices</subject><subject>Youngs modulus</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9j0lPwzAQhSMEEqVw5YZUceGU4N3JDSg7lUBsV8uxHerSxpGdCvrvcRRUqQc4zYzefDPvJckhBBkERX7qQyMzBADLIEdsKxlAwmGKCsK2Y48ZSSlAcDfZC2EGAChozgfJ8ZOzIbj6JIy8bK0b2XqklqVVo4VsjbdyHvaTnSoWc_Bbh8nb9dXr-DadPN7cjc8nqSIEtyk3OVGMU11QZRjiZVkSqBnmGhjNYElwLqU0RvNcM2AqbSqqMcUVVVAWRuNhkvV3lXcheFOJxtuF9CsBgegSii6h6BKKLmEEcA94t4rGnLKmXYmZW_o6jn9TRz01C63z6x8IIFAAjqOe9roNrfle69J_CsYxp-I9J-Iyf74vHi6AeIn7qN-f2o_pl_VGbNiJQ-ODFISh-CPiGOc0Qmf_Qp1l5erW1O0mKarlfC4aXeEfRtWXsQ</recordid><startdate>20061108</startdate><enddate>20061108</enddate><creator>Norris, Andrew N</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061108</creationdate><title>Poisson's ratio in cubic materials</title><author>Norris, Andrew N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7e84c675d95ce627bbb41d637d0ed61b438aaaeed78d60efdef5d353f5c1a9ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Cubic crystals</topic><topic>Cubic Symmetry</topic><topic>Elastic anisotropy</topic><topic>Extrema</topic><topic>Mathematical minima</topic><topic>Moduli of elasticity</topic><topic>Poisson ratio</topic><topic>Poisson's Ratio</topic><topic>Shear modulus</topic><topic>Triangles</topic><topic>Vertices</topic><topic>Youngs modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Andrew N</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norris, Andrew N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poisson's ratio in cubic materials</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>PROC R SOC A</addtitle><date>2006-11-08</date><risdate>2006</risdate><volume>462</volume><issue>2075</issue><spage>3385</spage><epage>3405</epage><pages>3385-3405</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Expressions are given for the maximum and minimum values of Poisson's ratio ν for materials with cubic symmetry. Values less than −1 occur if and only if the maximum shear modulus is associated with the cube axis and is at least 25 times the value of the minimum shear modulus. Large values of occur in directions at which the Young modulus is approximately equal to one half of its 111 value. Such directions, by their nature, are very close to 111. Application to data for cubic crystals indicates that certain Indium Thallium alloys simultaneously exhibit Poisson's ratio less than −1 and greater than +2.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.2006.1726</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2006-11, Vol.462 (2075), p.3385-3405
issn 1364-5021
1471-2946
language eng
recordid cdi_jstor_primary_20209073
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Anisotropy
Cubic crystals
Cubic Symmetry
Elastic anisotropy
Extrema
Mathematical minima
Moduli of elasticity
Poisson ratio
Poisson's Ratio
Shear modulus
Triangles
Vertices
Youngs modulus
title Poisson's ratio in cubic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poisson's%20ratio%20in%20cubic%20materials&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Norris,%20Andrew%20N&rft.date=2006-11-08&rft.volume=462&rft.issue=2075&rft.spage=3385&rft.epage=3405&rft.pages=3385-3405&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2006.1726&rft_dat=%3Cjstor_highw%3E20209073%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20209073&rfr_iscdi=true