Sequential Bottleneck Decomposition: An Approximation Method for Generalized Jackson Networks

In heavy traffic analysis of open queueing networks, processes of interest such as queue lengths and workload levels are generally approximated by a multidimensional reflected Brownian motion (RBM). Decomposition approximations, on the other hand, typically analyze stations in the network separately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1994-01, Vol.42 (1), p.119-136
Hauptverfasser: Dai, J. G, Nguyen, Vien, Reiman, Martin I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 119
container_title Operations research
container_volume 42
creator Dai, J. G
Nguyen, Vien
Reiman, Martin I
description In heavy traffic analysis of open queueing networks, processes of interest such as queue lengths and workload levels are generally approximated by a multidimensional reflected Brownian motion (RBM). Decomposition approximations, on the other hand, typically analyze stations in the network separately, treating each as a single queue with adjusted interarrival time distribution. We present a hybrid method for analyzing generalized Jackson networks that employs both decomposition approximation and heavy traffic theory: Stations in the network are partitioned into groups of "bottleneck subnetworks" that may have more than one station; the subnetworks then are analyzed "sequentially" with heavy traffic theory. Using the numerical method of J. G. Dai and J. M. Harrison for computing the stationary distribution of multidimensional RBMs, we compare the performance of this technique to other methods of approximation via some simulation studies. Our results suggest that this hybrid method generally performs better than other approximation techniques, including W. Whitt's QNA and J. M. Harrison and V. Nguyen's QNET.
doi_str_mv 10.1287/opre.42.1.119
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_171530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>171530</jstor_id><sourcerecordid>171530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-827f5024c05a8a4f4e46954c6ca9d92484218c5769dbb65d5195c18e132a8283</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxsiCSt65ORlgsaTs_b3D24rIEJQD3LgYprS6bjdnZ2ObTcgf70dd5GExHhq0vd53-973wfAAYJThKV4H4bophRP0RQhtQMmiGFeM8rJMzCBkMCacHq9B56ntIAQKsbZBHz_5n6uXZ-96aoPIefO9c4uqxNnw2oIyWcf-qNq1lezYYjhzq_M-FN9dnkemqoNsTorHdF0_t411YWxy1TKX1y-DXGZXoDd1nTJvdy---Dq4-nV8af68uvZ-fHssraUyFxLLFoGMbWQGWloSx3lilHLrVGNwlRSjKRlgqvm5oazhiHFLJIOEWwklmQfvN3IlhHLNinrlU_WdZ3pXVgnjTkTmENWwMMn4CKsY19G0xgpRASTqECv_wUhUmIUAitYqHpD2RhSiq7VQyzpxF8aQT2eQ4_n0BRrpMs5Cv9mq2qSNV0bTW99-ttEoaTij_mrDbZIOcRHTYEYGU3fbaq-L9Gv0n89t7nM_Y_5rS-lh76RS4_gb8LxryA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219137581</pqid></control><display><type>article</type><title>Sequential Bottleneck Decomposition: An Approximation Method for Generalized Jackson Networks</title><source>Informs</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Dai, J. G ; Nguyen, Vien ; Reiman, Martin I</creator><creatorcontrib>Dai, J. G ; Nguyen, Vien ; Reiman, Martin I</creatorcontrib><description>In heavy traffic analysis of open queueing networks, processes of interest such as queue lengths and workload levels are generally approximated by a multidimensional reflected Brownian motion (RBM). Decomposition approximations, on the other hand, typically analyze stations in the network separately, treating each as a single queue with adjusted interarrival time distribution. We present a hybrid method for analyzing generalized Jackson networks that employs both decomposition approximation and heavy traffic theory: Stations in the network are partitioned into groups of "bottleneck subnetworks" that may have more than one station; the subnetworks then are analyzed "sequentially" with heavy traffic theory. Using the numerical method of J. G. Dai and J. M. Harrison for computing the stationary distribution of multidimensional RBMs, we compare the performance of this technique to other methods of approximation via some simulation studies. Our results suggest that this hybrid method generally performs better than other approximation techniques, including W. Whitt's QNA and J. M. Harrison and V. Nguyen's QNET.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.42.1.119</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Brownian motion ; Covariance matrices ; Decomposition ; Exact sciences and technology ; Mathematical vectors ; Matrices ; networks: performance analysis of generalized Jackson networks ; Operational research and scientific management ; Operational research. Management science ; Operations research ; probability ; Queueing networks ; queues ; Queuing theory ; Queuing theory. Traffic theory ; stochastic model applications: heavy traffic and Brownian system model ; Stochastic models ; Studies ; Traffic ; Traffic congestion ; Traffic estimation ; Workloads</subject><ispartof>Operations research, 1994-01, Vol.42 (1), p.119-136</ispartof><rights>Copyright 1994 The Operations Research Society of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-827f5024c05a8a4f4e46954c6ca9d92484218c5769dbb65d5195c18e132a8283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/171530$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.42.1.119$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27869,27924,27925,58017,58250,62616</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4084781$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, J. G</creatorcontrib><creatorcontrib>Nguyen, Vien</creatorcontrib><creatorcontrib>Reiman, Martin I</creatorcontrib><title>Sequential Bottleneck Decomposition: An Approximation Method for Generalized Jackson Networks</title><title>Operations research</title><description>In heavy traffic analysis of open queueing networks, processes of interest such as queue lengths and workload levels are generally approximated by a multidimensional reflected Brownian motion (RBM). Decomposition approximations, on the other hand, typically analyze stations in the network separately, treating each as a single queue with adjusted interarrival time distribution. We present a hybrid method for analyzing generalized Jackson networks that employs both decomposition approximation and heavy traffic theory: Stations in the network are partitioned into groups of "bottleneck subnetworks" that may have more than one station; the subnetworks then are analyzed "sequentially" with heavy traffic theory. Using the numerical method of J. G. Dai and J. M. Harrison for computing the stationary distribution of multidimensional RBMs, we compare the performance of this technique to other methods of approximation via some simulation studies. Our results suggest that this hybrid method generally performs better than other approximation techniques, including W. Whitt's QNA and J. M. Harrison and V. Nguyen's QNET.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Brownian motion</subject><subject>Covariance matrices</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>networks: performance analysis of generalized Jackson networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>probability</subject><subject>Queueing networks</subject><subject>queues</subject><subject>Queuing theory</subject><subject>Queuing theory. Traffic theory</subject><subject>stochastic model applications: heavy traffic and Brownian system model</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Traffic</subject><subject>Traffic congestion</subject><subject>Traffic estimation</subject><subject>Workloads</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9PFDEUxxsiCSt65ORlgsaTs_b3D24rIEJQD3LgYprS6bjdnZ2ObTcgf70dd5GExHhq0vd53-973wfAAYJThKV4H4bophRP0RQhtQMmiGFeM8rJMzCBkMCacHq9B56ntIAQKsbZBHz_5n6uXZ-96aoPIefO9c4uqxNnw2oIyWcf-qNq1lezYYjhzq_M-FN9dnkemqoNsTorHdF0_t411YWxy1TKX1y-DXGZXoDd1nTJvdy---Dq4-nV8af68uvZ-fHssraUyFxLLFoGMbWQGWloSx3lilHLrVGNwlRSjKRlgqvm5oazhiHFLJIOEWwklmQfvN3IlhHLNinrlU_WdZ3pXVgnjTkTmENWwMMn4CKsY19G0xgpRASTqECv_wUhUmIUAitYqHpD2RhSiq7VQyzpxF8aQT2eQ4_n0BRrpMs5Cv9mq2qSNV0bTW99-ttEoaTij_mrDbZIOcRHTYEYGU3fbaq-L9Gv0n89t7nM_Y_5rS-lh76RS4_gb8LxryA</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Dai, J. G</creator><creator>Nguyen, Vien</creator><creator>Reiman, Martin I</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940101</creationdate><title>Sequential Bottleneck Decomposition: An Approximation Method for Generalized Jackson Networks</title><author>Dai, J. G ; Nguyen, Vien ; Reiman, Martin I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-827f5024c05a8a4f4e46954c6ca9d92484218c5769dbb65d5195c18e132a8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Brownian motion</topic><topic>Covariance matrices</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>networks: performance analysis of generalized Jackson networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>probability</topic><topic>Queueing networks</topic><topic>queues</topic><topic>Queuing theory</topic><topic>Queuing theory. Traffic theory</topic><topic>stochastic model applications: heavy traffic and Brownian system model</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Traffic</topic><topic>Traffic congestion</topic><topic>Traffic estimation</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, J. G</creatorcontrib><creatorcontrib>Nguyen, Vien</creatorcontrib><creatorcontrib>Reiman, Martin I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, J. G</au><au>Nguyen, Vien</au><au>Reiman, Martin I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Bottleneck Decomposition: An Approximation Method for Generalized Jackson Networks</atitle><jtitle>Operations research</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>42</volume><issue>1</issue><spage>119</spage><epage>136</epage><pages>119-136</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>In heavy traffic analysis of open queueing networks, processes of interest such as queue lengths and workload levels are generally approximated by a multidimensional reflected Brownian motion (RBM). Decomposition approximations, on the other hand, typically analyze stations in the network separately, treating each as a single queue with adjusted interarrival time distribution. We present a hybrid method for analyzing generalized Jackson networks that employs both decomposition approximation and heavy traffic theory: Stations in the network are partitioned into groups of "bottleneck subnetworks" that may have more than one station; the subnetworks then are analyzed "sequentially" with heavy traffic theory. Using the numerical method of J. G. Dai and J. M. Harrison for computing the stationary distribution of multidimensional RBMs, we compare the performance of this technique to other methods of approximation via some simulation studies. Our results suggest that this hybrid method generally performs better than other approximation techniques, including W. Whitt's QNA and J. M. Harrison and V. Nguyen's QNET.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/opre.42.1.119</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1994-01, Vol.42 (1), p.119-136
issn 0030-364X
1526-5463
language eng
recordid cdi_jstor_primary_171530
source Informs; Periodicals Index Online; EBSCOhost Business Source Complete; Jstor Complete Legacy
subjects Algorithms
Applied sciences
Approximation
Brownian motion
Covariance matrices
Decomposition
Exact sciences and technology
Mathematical vectors
Matrices
networks: performance analysis of generalized Jackson networks
Operational research and scientific management
Operational research. Management science
Operations research
probability
Queueing networks
queues
Queuing theory
Queuing theory. Traffic theory
stochastic model applications: heavy traffic and Brownian system model
Stochastic models
Studies
Traffic
Traffic congestion
Traffic estimation
Workloads
title Sequential Bottleneck Decomposition: An Approximation Method for Generalized Jackson Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Bottleneck%20Decomposition:%20An%20Approximation%20Method%20for%20Generalized%20Jackson%20Networks&rft.jtitle=Operations%20research&rft.au=Dai,%20J.%20G&rft.date=1994-01-01&rft.volume=42&rft.issue=1&rft.spage=119&rft.epage=136&rft.pages=119-136&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.42.1.119&rft_dat=%3Cjstor_proqu%3E171530%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219137581&rft_id=info:pmid/&rft_jstor_id=171530&rfr_iscdi=true