A Theorem on Symmetric Traveling Salesman Problems

This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1970-11, Vol.18 (6), p.1163-1167
1. Verfasser: Steckhan, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 6
container_start_page 1163
container_title Operations research
container_volume 18
creator Steckhan, Helmut
description This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.
doi_str_mv 10.1287/opre.18.6.1163
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_169412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>169412</jstor_id><sourcerecordid>169412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f4d01dd4b68446b084b32c698e54f4ba71ae10ecb5bf0784338faf1f5ef1b2573</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwsrBEYmBK8MUfccaq4kuqBFKLxGbZqd2mSuJgp6D-9yQKCDamG97vvbt7CF0CTiAV2a1rvUlAJDwB4OQITYClPGaUk2M0wZjgmHD6dorOQthhjHPG2QSls2i1Nc6bOnJNtDzUtel8WUQrrz5MVTabaKkqE2rVRC_e6crU4RydWFUFc_E9p-j1_m41f4wXzw9P89kiLvprutjSNYb1mmouKOUaC6pJWvBcGEYt1SoDZQCbQjNtcSYoIcIqC5YZCzplGZmi6zG39e59b0Ind27vm36lBNK_I1KRs55KRqrwLgRvrGx9WSt_kIDl0IscepEgJJdDL73hajTsQuf8L81zCmmvxqNaNtb5OvyfdjPy23Kz_Sx77cc4gOEP-QVxA3uV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303082895</pqid></control><display><type>article</type><title>A Theorem on Symmetric Traveling Salesman Problems</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><creator>Steckhan, Helmut</creator><creatorcontrib>Steckhan, Helmut</creatorcontrib><description>This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.18.6.1163</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>Traveling salesman problem</subject><ispartof>Operations research, 1970-11, Vol.18 (6), p.1163-1167</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-f4d01dd4b68446b084b32c698e54f4ba71ae10ecb5bf0784338faf1f5ef1b2573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/169412$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.18.6.1163$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27846,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Steckhan, Helmut</creatorcontrib><title>A Theorem on Symmetric Traveling Salesman Problems</title><title>Operations research</title><description>This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.</description><subject>Traveling salesman problem</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkL1PwzAQxS0EEqWwsrBEYmBK8MUfccaq4kuqBFKLxGbZqd2mSuJgp6D-9yQKCDamG97vvbt7CF0CTiAV2a1rvUlAJDwB4OQITYClPGaUk2M0wZjgmHD6dorOQthhjHPG2QSls2i1Nc6bOnJNtDzUtel8WUQrrz5MVTabaKkqE2rVRC_e6crU4RydWFUFc_E9p-j1_m41f4wXzw9P89kiLvprutjSNYb1mmouKOUaC6pJWvBcGEYt1SoDZQCbQjNtcSYoIcIqC5YZCzplGZmi6zG39e59b0Ind27vm36lBNK_I1KRs55KRqrwLgRvrGx9WSt_kIDl0IscepEgJJdDL73hajTsQuf8L81zCmmvxqNaNtb5OvyfdjPy23Kz_Sx77cc4gOEP-QVxA3uV</recordid><startdate>19701101</startdate><enddate>19701101</enddate><creator>Steckhan, Helmut</creator><general>INFORMS</general><general>Operations Research Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19701101</creationdate><title>A Theorem on Symmetric Traveling Salesman Problems</title><author>Steckhan, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f4d01dd4b68446b084b32c698e54f4ba71ae10ecb5bf0784338faf1f5ef1b2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steckhan, Helmut</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steckhan, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theorem on Symmetric Traveling Salesman Problems</atitle><jtitle>Operations research</jtitle><date>1970-11-01</date><risdate>1970</risdate><volume>18</volume><issue>6</issue><spage>1163</spage><epage>1167</epage><pages>1163-1167</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.18.6.1163</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1970-11, Vol.18 (6), p.1163-1167
issn 0030-364X
1526-5463
language eng
recordid cdi_jstor_primary_169412
source Jstor Complete Legacy; INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete
subjects Traveling salesman problem
title A Theorem on Symmetric Traveling Salesman Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theorem%20on%20Symmetric%20Traveling%20Salesman%20Problems&rft.jtitle=Operations%20research&rft.au=Steckhan,%20Helmut&rft.date=1970-11-01&rft.volume=18&rft.issue=6&rft.spage=1163&rft.epage=1167&rft.pages=1163-1167&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.18.6.1163&rft_dat=%3Cjstor_highw%3E169412%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303082895&rft_id=info:pmid/&rft_jstor_id=169412&rfr_iscdi=true