A Theorem on Symmetric Traveling Salesman Problems
This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arc...
Gespeichert in:
Veröffentlicht in: | Operations research 1970-11, Vol.18 (6), p.1163-1167 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 6 |
container_start_page | 1163 |
container_title | Operations research |
container_volume | 18 |
creator | Steckhan, Helmut |
description | This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems. |
doi_str_mv | 10.1287/opre.18.6.1163 |
format | Article |
fullrecord | <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_169412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>169412</jstor_id><sourcerecordid>169412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f4d01dd4b68446b084b32c698e54f4ba71ae10ecb5bf0784338faf1f5ef1b2573</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwsrBEYmBK8MUfccaq4kuqBFKLxGbZqd2mSuJgp6D-9yQKCDamG97vvbt7CF0CTiAV2a1rvUlAJDwB4OQITYClPGaUk2M0wZjgmHD6dorOQthhjHPG2QSls2i1Nc6bOnJNtDzUtel8WUQrrz5MVTabaKkqE2rVRC_e6crU4RydWFUFc_E9p-j1_m41f4wXzw9P89kiLvprutjSNYb1mmouKOUaC6pJWvBcGEYt1SoDZQCbQjNtcSYoIcIqC5YZCzplGZmi6zG39e59b0Ind27vm36lBNK_I1KRs55KRqrwLgRvrGx9WSt_kIDl0IscepEgJJdDL73hajTsQuf8L81zCmmvxqNaNtb5OvyfdjPy23Kz_Sx77cc4gOEP-QVxA3uV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303082895</pqid></control><display><type>article</type><title>A Theorem on Symmetric Traveling Salesman Problems</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><creator>Steckhan, Helmut</creator><creatorcontrib>Steckhan, Helmut</creatorcontrib><description>This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.18.6.1163</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>Traveling salesman problem</subject><ispartof>Operations research, 1970-11, Vol.18 (6), p.1163-1167</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-f4d01dd4b68446b084b32c698e54f4ba71ae10ecb5bf0784338faf1f5ef1b2573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/169412$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.18.6.1163$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27846,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Steckhan, Helmut</creatorcontrib><title>A Theorem on Symmetric Traveling Salesman Problems</title><title>Operations research</title><description>This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.</description><subject>Traveling salesman problem</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkL1PwzAQxS0EEqWwsrBEYmBK8MUfccaq4kuqBFKLxGbZqd2mSuJgp6D-9yQKCDamG97vvbt7CF0CTiAV2a1rvUlAJDwB4OQITYClPGaUk2M0wZjgmHD6dorOQthhjHPG2QSls2i1Nc6bOnJNtDzUtel8WUQrrz5MVTabaKkqE2rVRC_e6crU4RydWFUFc_E9p-j1_m41f4wXzw9P89kiLvprutjSNYb1mmouKOUaC6pJWvBcGEYt1SoDZQCbQjNtcSYoIcIqC5YZCzplGZmi6zG39e59b0Ind27vm36lBNK_I1KRs55KRqrwLgRvrGx9WSt_kIDl0IscepEgJJdDL73hajTsQuf8L81zCmmvxqNaNtb5OvyfdjPy23Kz_Sx77cc4gOEP-QVxA3uV</recordid><startdate>19701101</startdate><enddate>19701101</enddate><creator>Steckhan, Helmut</creator><general>INFORMS</general><general>Operations Research Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19701101</creationdate><title>A Theorem on Symmetric Traveling Salesman Problems</title><author>Steckhan, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f4d01dd4b68446b084b32c698e54f4ba71ae10ecb5bf0784338faf1f5ef1b2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steckhan, Helmut</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steckhan, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theorem on Symmetric Traveling Salesman Problems</atitle><jtitle>Operations research</jtitle><date>1970-11-01</date><risdate>1970</risdate><volume>18</volume><issue>6</issue><spage>1163</spage><epage>1167</epage><pages>1163-1167</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>This paper shows how to eliminate arcs from a complete directed finite graph so that a maximum number of hamiltonian circuits is destroyed while their reverses are preserved. For all complete directed finite graphs containing more than two nodes, this effect is achieved by eliminating just three arcs that form an elementary circuit. This result can be used in calculating branch-and-bound solutions for symmetric traveling salesman problems.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.18.6.1163</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1970-11, Vol.18 (6), p.1163-1167 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_jstor_primary_169412 |
source | Jstor Complete Legacy; INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete |
subjects | Traveling salesman problem |
title | A Theorem on Symmetric Traveling Salesman Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theorem%20on%20Symmetric%20Traveling%20Salesman%20Problems&rft.jtitle=Operations%20research&rft.au=Steckhan,%20Helmut&rft.date=1970-11-01&rft.volume=18&rft.issue=6&rft.spage=1163&rft.epage=1167&rft.pages=1163-1167&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.18.6.1163&rft_dat=%3Cjstor_highw%3E169412%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303082895&rft_id=info:pmid/&rft_jstor_id=169412&rfr_iscdi=true |