Free GaActions on C3
It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2000-01, Vol.128 (1), p.31-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 128 |
creator | Deveney, James K. Finston, David R. |
description | It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_119381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>119381</jstor_id><sourcerecordid>119381</sourcerecordid><originalsourceid>FETCH-jstor_primary_1193813</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GUTcilJTFdwTHZNLMvPzihXy8xScjXkYWNMSc4pTeaE0N4O0m2uIs4duVnFJflF8QVFmbmJRZbyhoaWxhaExflkAe3sjuw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free GaActions on C3</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Deveney, James K. ; Finston, David R.</creator><creatorcontrib>Deveney, James K. ; Finston, David R.</creatorcontrib><description>It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Algebra ; Algebraic conjugates ; Automorphisms ; Coordinate systems ; Factorials ; Logical proofs ; Mathematical rings ; Mathematics ; Morphisms ; Polynomials</subject><ispartof>Proceedings of the American Mathematical Society, 2000-01, Vol.128 (1), p.31-38</ispartof><rights>Copyright 2000 The American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/119381$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/119381$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Deveney, James K.</creatorcontrib><creatorcontrib>Finston, David R.</creatorcontrib><title>Free GaActions on C3</title><title>Proceedings of the American Mathematical Society</title><description>It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.</description><subject>Algebra</subject><subject>Algebraic conjugates</subject><subject>Automorphisms</subject><subject>Coordinate systems</subject><subject>Factorials</subject><subject>Logical proofs</subject><subject>Mathematical rings</subject><subject>Mathematics</subject><subject>Morphisms</subject><subject>Polynomials</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GUTcilJTFdwTHZNLMvPzihXy8xScjXkYWNMSc4pTeaE0N4O0m2uIs4duVnFJflF8QVFmbmJRZbyhoaWxhaExflkAe3sjuw</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Deveney, James K.</creator><creator>Finston, David R.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20000101</creationdate><title>Free GaActions on C3</title><author>Deveney, James K. ; Finston, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_1193813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Algebraic conjugates</topic><topic>Automorphisms</topic><topic>Coordinate systems</topic><topic>Factorials</topic><topic>Logical proofs</topic><topic>Mathematical rings</topic><topic>Mathematics</topic><topic>Morphisms</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deveney, James K.</creatorcontrib><creatorcontrib>Finston, David R.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deveney, James K.</au><au>Finston, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free GaActions on C3</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>128</volume><issue>1</issue><spage>31</spage><epage>38</epage><pages>31-38</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.</abstract><pub>American Mathematical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2000-01, Vol.128 (1), p.31-38 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_jstor_primary_119381 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | Algebra Algebraic conjugates Automorphisms Coordinate systems Factorials Logical proofs Mathematical rings Mathematics Morphisms Polynomials |
title | Free GaActions on C3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20GaActions%20on%20C3&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Deveney,%20James%20K.&rft.date=2000-01-01&rft.volume=128&rft.issue=1&rft.spage=31&rft.epage=38&rft.pages=31-38&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3E119381%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=119381&rfr_iscdi=true |