Free GaActions on C3

It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2000-01, Vol.128 (1), p.31-38
Hauptverfasser: Deveney, James K., Finston, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 31
container_title Proceedings of the American Mathematical Society
container_volume 128
creator Deveney, James K.
Finston, David R.
description It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_119381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>119381</jstor_id><sourcerecordid>119381</sourcerecordid><originalsourceid>FETCH-jstor_primary_1193813</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GUTcilJTFdwTHZNLMvPzihXy8xScjXkYWNMSc4pTeaE0N4O0m2uIs4duVnFJflF8QVFmbmJRZbyhoaWxhaExflkAe3sjuw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free GaActions on C3</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Deveney, James K. ; Finston, David R.</creator><creatorcontrib>Deveney, James K. ; Finston, David R.</creatorcontrib><description>It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Algebra ; Algebraic conjugates ; Automorphisms ; Coordinate systems ; Factorials ; Logical proofs ; Mathematical rings ; Mathematics ; Morphisms ; Polynomials</subject><ispartof>Proceedings of the American Mathematical Society, 2000-01, Vol.128 (1), p.31-38</ispartof><rights>Copyright 2000 The American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/119381$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/119381$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Deveney, James K.</creatorcontrib><creatorcontrib>Finston, David R.</creatorcontrib><title>Free GaActions on C3</title><title>Proceedings of the American Mathematical Society</title><description>It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.</description><subject>Algebra</subject><subject>Algebraic conjugates</subject><subject>Automorphisms</subject><subject>Coordinate systems</subject><subject>Factorials</subject><subject>Logical proofs</subject><subject>Mathematical rings</subject><subject>Mathematics</subject><subject>Morphisms</subject><subject>Polynomials</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GUTcilJTFdwTHZNLMvPzihXy8xScjXkYWNMSc4pTeaE0N4O0m2uIs4duVnFJflF8QVFmbmJRZbyhoaWxhaExflkAe3sjuw</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Deveney, James K.</creator><creator>Finston, David R.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20000101</creationdate><title>Free GaActions on C3</title><author>Deveney, James K. ; Finston, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_1193813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Algebraic conjugates</topic><topic>Automorphisms</topic><topic>Coordinate systems</topic><topic>Factorials</topic><topic>Logical proofs</topic><topic>Mathematical rings</topic><topic>Mathematics</topic><topic>Morphisms</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deveney, James K.</creatorcontrib><creatorcontrib>Finston, David R.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deveney, James K.</au><au>Finston, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free GaActions on C3</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>128</volume><issue>1</issue><spage>31</spage><epage>38</epage><pages>31-38</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>It has been conjectured that every free algebraic action of the additive group of complex numbers on complex affine three space is conjugate to a global translation. The main result lends support to this conjecture by showing that the morphism to the variety defined by the ring of invariants of the associated action on the coordinate ring is smooth. As a consequence, the graph morphism is an open immersion, and simple proofs of certain cases of the conjecture are obtained.</abstract><pub>American Mathematical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2000-01, Vol.128 (1), p.31-38
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_119381
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Algebra
Algebraic conjugates
Automorphisms
Coordinate systems
Factorials
Logical proofs
Mathematical rings
Mathematics
Morphisms
Polynomials
title Free GaActions on C3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20GaActions%20on%20C3&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Deveney,%20James%20K.&rft.date=2000-01-01&rft.volume=128&rft.issue=1&rft.spage=31&rft.epage=38&rft.pages=31-38&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3E119381%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=119381&rfr_iscdi=true