The Distribution of Solutions of the Congruence x1x2x3... x$_{n}\equiv $c (mod p)
For a cube B of size B, we obtain a lower bound on B so that B ∩ V is nonempty, where V is the algebraic subset of Fp ndefined by x1x2x3... x$_{n}\equiv $c (mod p), n a positive integer and c an integer not divisible by p. For n = 3 we obtain that B ∩ V is nonempty if B ≫ p2/3(log p)2/3, for n = 4 w...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1999-04, Vol.127 (4), p.943-950 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 950 |
---|---|
container_issue | 4 |
container_start_page | 943 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 127 |
creator | Ayyad, Anwar |
description | For a cube B of size B, we obtain a lower bound on B so that B ∩ V is nonempty, where V is the algebraic subset of Fp
ndefined by x1x2x3... x$_{n}\equiv $c (mod p), n a positive integer and c an integer not divisible by p. For n = 3 we obtain that B ∩ V is nonempty if B ≫ p2/3(log p)2/3, for n = 4 we obtain that B ∩ V is nonempty if B$\gg \sqrt{p}$logp, and for n ≥ 5 we obtain that B ∩ V is nonempty if B ≫ p$^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}}$(log p)3/2. Using the assumption of the Grand Riemann Hypothesis we obtain B ∩ V is nonempty if B ≫εp2/n+ε. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_119212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>119212</jstor_id><sourcerecordid>119212</sourcerecordid><originalsourceid>FETCH-jstor_primary_1192123</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GQJDMlIVXDKLS4oyk0pLMvPzFPLTFILzc8DsYhCnBKjAOT8vvag0NS85VaHCsMKowlhPT0-hQiW-Oq82JrWwNLNMQSVZQSM3P0WhQJOHgTUtMac4lRdKczNIu7mGOHvoZhWX5BfFFxRl5iYWVcYbGloaGRoZ45cFAAWwOXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Distribution of Solutions of the Congruence x1x2x3... x$_{n}\equiv $c (mod p)</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ayyad, Anwar</creator><creatorcontrib>Ayyad, Anwar</creatorcontrib><description>For a cube B of size B, we obtain a lower bound on B so that B ∩ V is nonempty, where V is the algebraic subset of Fp
ndefined by x1x2x3... x$_{n}\equiv $c (mod p), n a positive integer and c an integer not divisible by p. For n = 3 we obtain that B ∩ V is nonempty if B ≫ p2/3(log p)2/3, for n = 4 we obtain that B ∩ V is nonempty if B$\gg \sqrt{p}$logp, and for n ≥ 5 we obtain that B ∩ V is nonempty if B ≫ p$^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}}$(log p)3/2. Using the assumption of the Grand Riemann Hypothesis we obtain B ∩ V is nonempty if B ≫εp2/n+ε.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Algebra ; Cubes ; Integers ; Mathematical congruence ; Mathematical theorems</subject><ispartof>Proceedings of the American Mathematical Society, 1999-04, Vol.127 (4), p.943-950</ispartof><rights>Copyright 1999 The American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/119212$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/119212$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Ayyad, Anwar</creatorcontrib><title>The Distribution of Solutions of the Congruence x1x2x3... x$_{n}\equiv $c (mod p)</title><title>Proceedings of the American Mathematical Society</title><description>For a cube B of size B, we obtain a lower bound on B so that B ∩ V is nonempty, where V is the algebraic subset of Fp
ndefined by x1x2x3... x$_{n}\equiv $c (mod p), n a positive integer and c an integer not divisible by p. For n = 3 we obtain that B ∩ V is nonempty if B ≫ p2/3(log p)2/3, for n = 4 we obtain that B ∩ V is nonempty if B$\gg \sqrt{p}$logp, and for n ≥ 5 we obtain that B ∩ V is nonempty if B ≫ p$^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}}$(log p)3/2. Using the assumption of the Grand Riemann Hypothesis we obtain B ∩ V is nonempty if B ≫εp2/n+ε.</description><subject>Algebra</subject><subject>Cubes</subject><subject>Integers</subject><subject>Mathematical congruence</subject><subject>Mathematical theorems</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GQJDMlIVXDKLS4oyk0pLMvPzFPLTFILzc8DsYhCnBKjAOT8vvag0NS85VaHCsMKowlhPT0-hQiW-Oq82JrWwNLNMQSVZQSM3P0WhQJOHgTUtMac4lRdKczNIu7mGOHvoZhWX5BfFFxRl5iYWVcYbGloaGRoZ45cFAAWwOXg</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Ayyad, Anwar</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>19990401</creationdate><title>The Distribution of Solutions of the Congruence x1x2x3... x$_{n}\equiv $c (mod p)</title><author>Ayyad, Anwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_1192123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algebra</topic><topic>Cubes</topic><topic>Integers</topic><topic>Mathematical congruence</topic><topic>Mathematical theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayyad, Anwar</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayyad, Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of Solutions of the Congruence x1x2x3... x$_{n}\equiv $c (mod p)</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1999-04-01</date><risdate>1999</risdate><volume>127</volume><issue>4</issue><spage>943</spage><epage>950</epage><pages>943-950</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>For a cube B of size B, we obtain a lower bound on B so that B ∩ V is nonempty, where V is the algebraic subset of Fp
ndefined by x1x2x3... x$_{n}\equiv $c (mod p), n a positive integer and c an integer not divisible by p. For n = 3 we obtain that B ∩ V is nonempty if B ≫ p2/3(log p)2/3, for n = 4 we obtain that B ∩ V is nonempty if B$\gg \sqrt{p}$logp, and for n ≥ 5 we obtain that B ∩ V is nonempty if B ≫ p$^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}}$(log p)3/2. Using the assumption of the Grand Riemann Hypothesis we obtain B ∩ V is nonempty if B ≫εp2/n+ε.</abstract><pub>American Mathematical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 1999-04, Vol.127 (4), p.943-950 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_jstor_primary_119212 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Cubes Integers Mathematical congruence Mathematical theorems |
title | The Distribution of Solutions of the Congruence x1x2x3... x$_{n}\equiv $c (mod p) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20Solutions%20of%20the%20Congruence%20x1x2x3...%20x$_%7Bn%7D%5Cequiv%20$c%20(mod%20p)&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ayyad,%20Anwar&rft.date=1999-04-01&rft.volume=127&rft.issue=4&rft.spage=943&rft.epage=950&rft.pages=943-950&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3E119212%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=119212&rfr_iscdi=true |