THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E
In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsis...
Gespeichert in:
Veröffentlicht in: | Journal of computational mathematics 2017-09, Vol.35 (5), p.620-641 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 5 |
container_start_page | 620 |
container_title | Journal of computational mathematics |
container_volume | 35 |
creator | Ke, Yifen Ma, Changfeng |
description | In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_45151458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45151458</jstor_id><sourcerecordid>45151458</sourcerecordid><originalsourceid>FETCH-jstor_primary_10_2307_451514583</originalsourceid><addsrcrecordid>eNqNi00KgkAYQIcoyH7u8G1ahTCjIzaLFpN-5YA_pVPYSoIKiqLQNl2hc3SyTlJGB2j1Fu-9BjGYEMx0mS2axKCWw03BqWiTTlUdKaW2xV2DbHWAIEONaSy1imfgqxQ9rZIYItRB4mcwTVLIknBV27rO1uEKs89h6vUcIZI6VTngYim_m8xhAkPwcng9nuDDGLBHWvvNqdr1f-ySwRS1F5jH6nYpi2t5OG_Ke8FoYdnULbjDHMadkf1v9wbPoj3j</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ke, Yifen ; Ma, Changfeng</creator><creatorcontrib>Ke, Yifen ; Ma, Changfeng</creatorcontrib><description>In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</publisher><ispartof>Journal of computational mathematics, 2017-09, Vol.35 (5), p.620-641</ispartof><rights>Copyright 2017 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45151458$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45151458$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Ke, Yifen</creatorcontrib><creatorcontrib>Ma, Changfeng</creatorcontrib><title>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</title><title>Journal of computational mathematics</title><description>In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.</description><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNi00KgkAYQIcoyH7u8G1ahTCjIzaLFpN-5YA_pVPYSoIKiqLQNl2hc3SyTlJGB2j1Fu-9BjGYEMx0mS2axKCWw03BqWiTTlUdKaW2xV2DbHWAIEONaSy1imfgqxQ9rZIYItRB4mcwTVLIknBV27rO1uEKs89h6vUcIZI6VTngYim_m8xhAkPwcng9nuDDGLBHWvvNqdr1f-ySwRS1F5jH6nYpi2t5OG_Ke8FoYdnULbjDHMadkf1v9wbPoj3j</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ke, Yifen</creator><creator>Ma, Changfeng</creator><general>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</general><scope/></search><sort><creationdate>20170901</creationdate><title>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</title><author>Ke, Yifen ; Ma, Changfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_10_2307_451514583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Yifen</creatorcontrib><creatorcontrib>Ma, Changfeng</creatorcontrib><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Yifen</au><au>Ma, Changfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</atitle><jtitle>Journal of computational mathematics</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>35</volume><issue>5</issue><spage>620</spage><epage>641</epage><pages>620-641</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.</abstract><pub>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-9409 |
ispartof | Journal of computational mathematics, 2017-09, Vol.35 (5), p.620-641 |
issn | 0254-9409 1991-7139 |
language | eng |
recordid | cdi_jstor_primary_10_2307_45151458 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
title | THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20ALTERNATING%20DIRECTION%20METHODS%20FOR%20SOLVING%20THE%20SYLVESTER-TYPE%20MATRIX%20EQUATION%20AX%20B%20+%20CX%20%E2%8A%A4%20D%20=%20E&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Ke,%20Yifen&rft.date=2017-09-01&rft.volume=35&rft.issue=5&rft.spage=620&rft.epage=641&rft.pages=620-641&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/&rft_dat=%3Cjstor%3E45151458%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45151458&rfr_iscdi=true |