THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E

In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2017-09, Vol.35 (5), p.620-641
Hauptverfasser: Ke, Yifen, Ma, Changfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 5
container_start_page 620
container_title Journal of computational mathematics
container_volume 35
creator Ke, Yifen
Ma, Changfeng
description In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_45151458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45151458</jstor_id><sourcerecordid>45151458</sourcerecordid><originalsourceid>FETCH-jstor_primary_10_2307_451514583</originalsourceid><addsrcrecordid>eNqNi00KgkAYQIcoyH7u8G1ahTCjIzaLFpN-5YA_pVPYSoIKiqLQNl2hc3SyTlJGB2j1Fu-9BjGYEMx0mS2axKCWw03BqWiTTlUdKaW2xV2DbHWAIEONaSy1imfgqxQ9rZIYItRB4mcwTVLIknBV27rO1uEKs89h6vUcIZI6VTngYim_m8xhAkPwcng9nuDDGLBHWvvNqdr1f-ySwRS1F5jH6nYpi2t5OG_Ke8FoYdnULbjDHMadkf1v9wbPoj3j</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ke, Yifen ; Ma, Changfeng</creator><creatorcontrib>Ke, Yifen ; Ma, Changfeng</creatorcontrib><description>In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</publisher><ispartof>Journal of computational mathematics, 2017-09, Vol.35 (5), p.620-641</ispartof><rights>Copyright 2017 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45151458$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45151458$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Ke, Yifen</creatorcontrib><creatorcontrib>Ma, Changfeng</creatorcontrib><title>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</title><title>Journal of computational mathematics</title><description>In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.</description><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNi00KgkAYQIcoyH7u8G1ahTCjIzaLFpN-5YA_pVPYSoIKiqLQNl2hc3SyTlJGB2j1Fu-9BjGYEMx0mS2axKCWw03BqWiTTlUdKaW2xV2DbHWAIEONaSy1imfgqxQ9rZIYItRB4mcwTVLIknBV27rO1uEKs89h6vUcIZI6VTngYim_m8xhAkPwcng9nuDDGLBHWvvNqdr1f-ySwRS1F5jH6nYpi2t5OG_Ke8FoYdnULbjDHMadkf1v9wbPoj3j</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ke, Yifen</creator><creator>Ma, Changfeng</creator><general>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</general><scope/></search><sort><creationdate>20170901</creationdate><title>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</title><author>Ke, Yifen ; Ma, Changfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_10_2307_451514583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Yifen</creatorcontrib><creatorcontrib>Ma, Changfeng</creatorcontrib><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Yifen</au><au>Ma, Changfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E</atitle><jtitle>Journal of computational mathematics</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>35</volume><issue>5</issue><spage>620</spage><epage>641</epage><pages>620-641</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper, we present two alternating direction methods for the solution and best approximate solution of the Sylvester-type matrix equation AX B + CX⊤ D = E arising in the control theory, where A, B, C, D and E are given matrices of suitable sizes. If the matrix equation is consistent (inconsistent), then the solution (the least squares solution) can be obtained. Preliminary convergence properties of the proposed algorithms are presented. Numerical experiments show that the proposed algorithms tend to deliver higher quality solutions with less iteration steps and CPU time than some existing algorithms on the tested problems.</abstract><pub>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</pub></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2017-09, Vol.35 (5), p.620-641
issn 0254-9409
1991-7139
language eng
recordid cdi_jstor_primary_10_2307_45151458
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title THE ALTERNATING DIRECTION METHODS FOR SOLVING THE SYLVESTER-TYPE MATRIX EQUATION AX B + CX ⊤ D = E
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20ALTERNATING%20DIRECTION%20METHODS%20FOR%20SOLVING%20THE%20SYLVESTER-TYPE%20MATRIX%20EQUATION%20AX%20B%20+%20CX%20%E2%8A%A4%20D%20=%20E&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Ke,%20Yifen&rft.date=2017-09-01&rft.volume=35&rft.issue=5&rft.spage=620&rft.epage=641&rft.pages=620-641&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/&rft_dat=%3Cjstor%3E45151458%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45151458&rfr_iscdi=true