Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models

This article presents a new exact solution for the initialization of the Kalman filter for state space models with diffuse initial conditions. For example, the regression model with stochastic trend, seasonal and other nonstationary autoregressive integrated moving average components requires a (par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1997-12, Vol.92 (440), p.1630-1638
1. Verfasser: Koopman, Siem Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1638
container_issue 440
container_start_page 1630
container_title Journal of the American Statistical Association
container_volume 92
creator Koopman, Siem Jan
description This article presents a new exact solution for the initialization of the Kalman filter for state space models with diffuse initial conditions. For example, the regression model with stochastic trend, seasonal and other nonstationary autoregressive integrated moving average components requires a (partially) diffuse initial state vector. The proposed analytical solution is easy to implement and computationally efficient. The exact solution for smoothing is also given. Missing observations are handled in a straightforward manner. All proofs rely on elementary results.
doi_str_mv 10.1080/01621459.1997.10473685
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2965434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2965434</jstor_id><sourcerecordid>2965434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-1d21cd8100e0b4e6803f76f9321c19c8dc831e6edaa117f542ce62f411708f03</originalsourceid><addsrcrecordid>eNqFkVFrFTEQhYMoeK3-hRJUfNua2WST7GMprS3WFul96FuI2URzySY1yUX775vl9qoI4rwMM3xzGM5B6BDIERBJ3hPgPbBhPIJxFG3FBOVyeIJWMFDR9YLdPkWrBeoW6jl6UcqGtBJSrtDn05_aVHwRffU64I86zDriMx-qzT5-xTpO-GZOqX5bJpcyvkqxVF19ijrf47WfLb5prC34U5psKC_RM6dDsa8e-wFan52uT867y-sPFyfHl51hXNQOph7MJIEQS74wyyWhTnA30raG0cjJSAqW20lrAOEG1hvLe8faQKQj9AC928ne5fR9a0tVsy_GhqCjTduiqOSEciEa-PovcJO2ObbXVPNGymbDovbmXxAwwSilTAyN4jvK5FRKtk7dZT83GxQQtWSh9lmoJQu1z6Idvn2U18Xo4LKOxpdf1z0QwQF-Y5tSU_5TvKdEqH7kA6OsYcc7zMcWyKx_pBwmVfV9SHkvTf_z0QNp-Ka6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274887880</pqid></control><display><type>article</type><title>Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models</title><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis Journals Complete</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Koopman, Siem Jan</creator><creatorcontrib>Koopman, Siem Jan</creatorcontrib><description>This article presents a new exact solution for the initialization of the Kalman filter for state space models with diffuse initial conditions. For example, the regression model with stochastic trend, seasonal and other nonstationary autoregressive integrated moving average components requires a (partially) diffuse initial state vector. The proposed analytical solution is easy to implement and computationally efficient. The exact solution for smoothing is also given. Missing observations are handled in a straightforward manner. All proofs rely on elementary results.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1997.10473685</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Autoregressive integrated moving average component models ; Covariance matrices ; Data smoothing ; Diffuse initial conditions ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Kalman filters ; Likelihood function and score vector ; Mathematical analysis ; Mathematical models ; Mathematical vectors ; Mathematics ; Matrices ; Missing observations ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Seasonality ; Spatial dimension ; State space ; State vectors ; Statistical analysis ; Statistical variance ; Statistics ; Stochastic models ; Theory and Methods ; Time series ; Time series models</subject><ispartof>Journal of the American Statistical Association, 1997-12, Vol.92 (440), p.1630-1638</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1997</rights><rights>Copyright 1997 American Statistical Association</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Statistical Association Dec 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-1d21cd8100e0b4e6803f76f9321c19c8dc831e6edaa117f542ce62f411708f03</citedby><cites>FETCH-LOGICAL-c467t-1d21cd8100e0b4e6803f76f9321c19c8dc831e6edaa117f542ce62f411708f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2965434$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2965434$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2107611$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koopman, Siem Jan</creatorcontrib><title>Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models</title><title>Journal of the American Statistical Association</title><description>This article presents a new exact solution for the initialization of the Kalman filter for state space models with diffuse initial conditions. For example, the regression model with stochastic trend, seasonal and other nonstationary autoregressive integrated moving average components requires a (partially) diffuse initial state vector. The proposed analytical solution is easy to implement and computationally efficient. The exact solution for smoothing is also given. Missing observations are handled in a straightforward manner. All proofs rely on elementary results.</description><subject>Autoregressive integrated moving average component models</subject><subject>Covariance matrices</subject><subject>Data smoothing</subject><subject>Diffuse initial conditions</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Kalman filters</subject><subject>Likelihood function and score vector</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Missing observations</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Seasonality</subject><subject>Spatial dimension</subject><subject>State space</subject><subject>State vectors</subject><subject>Statistical analysis</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Theory and Methods</subject><subject>Time series</subject><subject>Time series models</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkVFrFTEQhYMoeK3-hRJUfNua2WST7GMprS3WFul96FuI2URzySY1yUX775vl9qoI4rwMM3xzGM5B6BDIERBJ3hPgPbBhPIJxFG3FBOVyeIJWMFDR9YLdPkWrBeoW6jl6UcqGtBJSrtDn05_aVHwRffU64I86zDriMx-qzT5-xTpO-GZOqX5bJpcyvkqxVF19ijrf47WfLb5prC34U5psKC_RM6dDsa8e-wFan52uT867y-sPFyfHl51hXNQOph7MJIEQS74wyyWhTnA30raG0cjJSAqW20lrAOEG1hvLe8faQKQj9AC928ne5fR9a0tVsy_GhqCjTduiqOSEciEa-PovcJO2ObbXVPNGymbDovbmXxAwwSilTAyN4jvK5FRKtk7dZT83GxQQtWSh9lmoJQu1z6Idvn2U18Xo4LKOxpdf1z0QwQF-Y5tSU_5TvKdEqH7kA6OsYcc7zMcWyKx_pBwmVfV9SHkvTf_z0QNp-Ka6</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Koopman, Siem Jan</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19971201</creationdate><title>Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models</title><author>Koopman, Siem Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-1d21cd8100e0b4e6803f76f9321c19c8dc831e6edaa117f542ce62f411708f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Autoregressive integrated moving average component models</topic><topic>Covariance matrices</topic><topic>Data smoothing</topic><topic>Diffuse initial conditions</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Kalman filters</topic><topic>Likelihood function and score vector</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Missing observations</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Seasonality</topic><topic>Spatial dimension</topic><topic>State space</topic><topic>State vectors</topic><topic>Statistical analysis</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Theory and Methods</topic><topic>Time series</topic><topic>Time series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koopman, Siem Jan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koopman, Siem Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>92</volume><issue>440</issue><spage>1630</spage><epage>1638</epage><pages>1630-1638</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>This article presents a new exact solution for the initialization of the Kalman filter for state space models with diffuse initial conditions. For example, the regression model with stochastic trend, seasonal and other nonstationary autoregressive integrated moving average components requires a (partially) diffuse initial state vector. The proposed analytical solution is easy to implement and computationally efficient. The exact solution for smoothing is also given. Missing observations are handled in a straightforward manner. All proofs rely on elementary results.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1997.10473685</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1997-12, Vol.92 (440), p.1630-1638
issn 0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_10_2307_2965434
source Jstor Complete Legacy; Taylor & Francis Journals Complete; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Autoregressive integrated moving average component models
Covariance matrices
Data smoothing
Diffuse initial conditions
Exact sciences and technology
Inference from stochastic processes
time series analysis
Kalman filters
Likelihood function and score vector
Mathematical analysis
Mathematical models
Mathematical vectors
Mathematics
Matrices
Missing observations
Probability and statistics
Regression analysis
Sciences and techniques of general use
Seasonality
Spatial dimension
State space
State vectors
Statistical analysis
Statistical variance
Statistics
Stochastic models
Theory and Methods
Time series
Time series models
title Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Initial%20Kalman%20Filtering%20and%20Smoothing%20for%20Nonstationary%20Time%20Series%20Models&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Koopman,%20Siem%20Jan&rft.date=1997-12-01&rft.volume=92&rft.issue=440&rft.spage=1630&rft.epage=1638&rft.pages=1630-1638&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1997.10473685&rft_dat=%3Cjstor_proqu%3E2965434%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274887880&rft_id=info:pmid/&rft_jstor_id=2965434&rfr_iscdi=true