Notions of Limiting P Values Based on Data Depth and Bootstrap
In this article we propose some new notions of limiting P values for hypothesis testing. The limiting P value (LP) here not only provides the usual attractive interpretation of a P value as the strength in support of the null hypothesis coming from the observed data, but also has several advantages....
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1997-03, Vol.92 (437), p.266-277 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 437 |
container_start_page | 266 |
container_title | Journal of the American Statistical Association |
container_volume | 92 |
creator | Liu, Regina Y. Singh, Kesar |
description | In this article we propose some new notions of limiting P values for hypothesis testing. The limiting P value (LP) here not only provides the usual attractive interpretation of a P value as the strength in support of the null hypothesis coming from the observed data, but also has several advantages. First, it allows us to resample directly from the empirical distribution (in the bootstrap implementations), rather than from the estimated population distribution satisfying the null constraints. Second, it serves as a test statistic and as a P value simultaneously, and thus enables us to obtain test results directly without having to construct an explicit test statistic and then establish or approximate its sampling distribution. These are the two steps generally required in a standard testing procedure. Using bootstrap and the concept of data depth, we have provided LP's for a broad class of testing problems where the parameters of interest can be either finite or infinite dimensional. Some computer simulation results show the generality and the computational feasibility of our approach. |
doi_str_mv | 10.1080/01621459.1997.10473624 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2291471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2291471</jstor_id><sourcerecordid>2291471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2660d77287d8de429294b4dcb4294eb04a206162227ee931bb095212a36571993</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOD_-ggQVvKomJ2nT3AjObxjqhYp3IW1T7eiamWTI_r0p21QEMTcJ4Tkvz3kR2qPkmJKcnBCaAeWpPKZSivjFBcuAr6EBTZlIQPCXdTTooaSnNtGW92MSj8jzATq9s6Gxnce2xqNm0oSme8UP-Fm3M-PxUHtTYdvhCx00vjDT8IZ1V-GhtcEHp6c7aKPWrTe7y3sbPV1dPp7fJKP769vzs1FSMkFDAllGKiEgF1VeGQ4SJC94VRbxyU1BuAaSRUMAYYxktCiITIGCZlkq4lpsGx0tcqfOvkezoCaNL03b6s7YmVc5k0RQRnkk93-RYztzXZRTsYpcAlARoYO_IMoFZyyNOpHKFlTprPfO1Grqmol2c0WJ6qtXq-pVX71aVR8HD5fx2pe6rZ3uysZ_TYOQnEH6jY19sO5nODAiFICMMr3G2QJrutq6if6wrq1U0PPWulU0-8foE6DBnfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274892217</pqid></control><display><type>article</type><title>Notions of Limiting P Values Based on Data Depth and Bootstrap</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Taylor & Francis Journals Complete</source><creator>Liu, Regina Y. ; Singh, Kesar</creator><creatorcontrib>Liu, Regina Y. ; Singh, Kesar</creatorcontrib><description>In this article we propose some new notions of limiting P values for hypothesis testing. The limiting P value (LP) here not only provides the usual attractive interpretation of a P value as the strength in support of the null hypothesis coming from the observed data, but also has several advantages. First, it allows us to resample directly from the empirical distribution (in the bootstrap implementations), rather than from the estimated population distribution satisfying the null constraints. Second, it serves as a test statistic and as a P value simultaneously, and thus enables us to obtain test results directly without having to construct an explicit test statistic and then establish or approximate its sampling distribution. These are the two steps generally required in a standard testing procedure. Using bootstrap and the concept of data depth, we have provided LP's for a broad class of testing problems where the parameters of interest can be either finite or infinite dimensional. Some computer simulation results show the generality and the computational feasibility of our approach.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1997.10473624</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Bootstrap ; Boundary points ; Covariance matrices ; Data depth ; Distribution ; Exact sciences and technology ; Histograms ; Hypotheses ; Hypothesis testing ; Limiting P value ; Logical givens ; Mathematics ; Null hypothesis ; P values ; Probability and statistics ; Random variables ; Samples ; Sampling distributions ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistics ; T tests ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 1997-03, Vol.92 (437), p.266-277</ispartof><rights>Copyright Taylor & Francis Group, LLC 1997</rights><rights>Copyright 1997 American Statistical Association</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Statistical Association Mar 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-2660d77287d8de429294b4dcb4294eb04a206162227ee931bb095212a36571993</citedby><cites>FETCH-LOGICAL-c371t-2660d77287d8de429294b4dcb4294eb04a206162227ee931bb095212a36571993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2291471$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2291471$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2794325$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Regina Y.</creatorcontrib><creatorcontrib>Singh, Kesar</creatorcontrib><title>Notions of Limiting P Values Based on Data Depth and Bootstrap</title><title>Journal of the American Statistical Association</title><description>In this article we propose some new notions of limiting P values for hypothesis testing. The limiting P value (LP) here not only provides the usual attractive interpretation of a P value as the strength in support of the null hypothesis coming from the observed data, but also has several advantages. First, it allows us to resample directly from the empirical distribution (in the bootstrap implementations), rather than from the estimated population distribution satisfying the null constraints. Second, it serves as a test statistic and as a P value simultaneously, and thus enables us to obtain test results directly without having to construct an explicit test statistic and then establish or approximate its sampling distribution. These are the two steps generally required in a standard testing procedure. Using bootstrap and the concept of data depth, we have provided LP's for a broad class of testing problems where the parameters of interest can be either finite or infinite dimensional. Some computer simulation results show the generality and the computational feasibility of our approach.</description><subject>Bootstrap</subject><subject>Boundary points</subject><subject>Covariance matrices</subject><subject>Data depth</subject><subject>Distribution</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Limiting P value</subject><subject>Logical givens</subject><subject>Mathematics</subject><subject>Null hypothesis</subject><subject>P values</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Samples</subject><subject>Sampling distributions</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>T tests</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkF1LwzAUhoMoOD_-ggQVvKomJ2nT3AjObxjqhYp3IW1T7eiamWTI_r0p21QEMTcJ4Tkvz3kR2qPkmJKcnBCaAeWpPKZSivjFBcuAr6EBTZlIQPCXdTTooaSnNtGW92MSj8jzATq9s6Gxnce2xqNm0oSme8UP-Fm3M-PxUHtTYdvhCx00vjDT8IZ1V-GhtcEHp6c7aKPWrTe7y3sbPV1dPp7fJKP769vzs1FSMkFDAllGKiEgF1VeGQ4SJC94VRbxyU1BuAaSRUMAYYxktCiITIGCZlkq4lpsGx0tcqfOvkezoCaNL03b6s7YmVc5k0RQRnkk93-RYztzXZRTsYpcAlARoYO_IMoFZyyNOpHKFlTprPfO1Grqmol2c0WJ6qtXq-pVX71aVR8HD5fx2pe6rZ3uysZ_TYOQnEH6jY19sO5nODAiFICMMr3G2QJrutq6if6wrq1U0PPWulU0-8foE6DBnfA</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Liu, Regina Y.</creator><creator>Singh, Kesar</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19970301</creationdate><title>Notions of Limiting P Values Based on Data Depth and Bootstrap</title><author>Liu, Regina Y. ; Singh, Kesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2660d77287d8de429294b4dcb4294eb04a206162227ee931bb095212a36571993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Bootstrap</topic><topic>Boundary points</topic><topic>Covariance matrices</topic><topic>Data depth</topic><topic>Distribution</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Limiting P value</topic><topic>Logical givens</topic><topic>Mathematics</topic><topic>Null hypothesis</topic><topic>P values</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Samples</topic><topic>Sampling distributions</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>T tests</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Regina Y.</creatorcontrib><creatorcontrib>Singh, Kesar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Regina Y.</au><au>Singh, Kesar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notions of Limiting P Values Based on Data Depth and Bootstrap</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>92</volume><issue>437</issue><spage>266</spage><epage>277</epage><pages>266-277</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>In this article we propose some new notions of limiting P values for hypothesis testing. The limiting P value (LP) here not only provides the usual attractive interpretation of a P value as the strength in support of the null hypothesis coming from the observed data, but also has several advantages. First, it allows us to resample directly from the empirical distribution (in the bootstrap implementations), rather than from the estimated population distribution satisfying the null constraints. Second, it serves as a test statistic and as a P value simultaneously, and thus enables us to obtain test results directly without having to construct an explicit test statistic and then establish or approximate its sampling distribution. These are the two steps generally required in a standard testing procedure. Using bootstrap and the concept of data depth, we have provided LP's for a broad class of testing problems where the parameters of interest can be either finite or infinite dimensional. Some computer simulation results show the generality and the computational feasibility of our approach.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1997.10473624</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1997-03, Vol.92 (437), p.266-277 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_10_2307_2291471 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Taylor & Francis Journals Complete |
subjects | Bootstrap Boundary points Covariance matrices Data depth Distribution Exact sciences and technology Histograms Hypotheses Hypothesis testing Limiting P value Logical givens Mathematics Null hypothesis P values Probability and statistics Random variables Samples Sampling distributions Sampling theory, sample surveys Sciences and techniques of general use Statistics T tests Theory and Methods |
title | Notions of Limiting P Values Based on Data Depth and Bootstrap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notions%20of%20Limiting%20P%20Values%20Based%20on%20Data%20Depth%20and%20Bootstrap&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Liu,%20Regina%20Y.&rft.date=1997-03-01&rft.volume=92&rft.issue=437&rft.spage=266&rft.epage=277&rft.pages=266-277&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1997.10473624&rft_dat=%3Cjstor_proqu%3E2291471%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274892217&rft_id=info:pmid/&rft_jstor_id=2291471&rfr_iscdi=true |