Predicting a Multitude of Time Series

Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1981-09, Vol.76 (375), p.516-523
Hauptverfasser: Thisted, Ronald A., Wecker, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 375
container_start_page 516
container_title Journal of the American Statistical Association
container_volume 76
creator Thisted, Ronald A.
Wecker, William E.
description Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.
doi_str_mv 10.1080/01621459.1981.10477678
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2287504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2287504</jstor_id><sourcerecordid>2287504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</originalsourceid><addsrcrecordid>eNqFj01Lw0AQhhdRsFb_guSgx9Sd_chMj6VoFSoKVvC2pNld2ZI2spsi_fcmxII35zIwPO_MPIxdA58AJ37HoRCg9HQCU4JupBALpBM2Ai0xF6g-Ttmoh_KeOmcXKW14V0g0Yrev0dlQtWH3mZXZ875uQ7u3Lmt8tgpbl725GFy6ZGe-rJO7-u1j9v5wv5o_5suXxdN8tswrQUWbE0dp0UopnNbdDyhoiuCBrwuvhddknZIIipQDtVYVOU2ie1CvpZZWgRyzYthbxSal6Lz5imFbxoMBbnpZc5Q1vaw5ynbBmyG4SW0T_6aE5GiEINRcddhswMLON3FbfjextqYtD3UTfSx3VUhG_nPqB_0IZCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting a Multitude of Time Series</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Thisted, Ronald A. ; Wecker, William E.</creator><creatorcontrib>Thisted, Ronald A. ; Wecker, William E.</creatorcontrib><description>Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1981.10477678</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Applications ; Correlations ; Estimate reliability ; Estimators ; Estimators for the mean ; Maximum likelihood estimation ; Minimax ; Modeling ; Multiple time series ; Shrinkage estimators ; Standard deviation ; Statistical variance ; Stein estimators ; Time series forecasting</subject><ispartof>Journal of the American Statistical Association, 1981-09, Vol.76 (375), p.516-523</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</citedby><cites>FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2287504$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2287504$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Thisted, Ronald A.</creatorcontrib><creatorcontrib>Wecker, William E.</creatorcontrib><title>Predicting a Multitude of Time Series</title><title>Journal of the American Statistical Association</title><description>Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.</description><subject>Applications</subject><subject>Correlations</subject><subject>Estimate reliability</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Maximum likelihood estimation</subject><subject>Minimax</subject><subject>Modeling</subject><subject>Multiple time series</subject><subject>Shrinkage estimators</subject><subject>Standard deviation</subject><subject>Statistical variance</subject><subject>Stein estimators</subject><subject>Time series forecasting</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AQhhdRsFb_guSgx9Sd_chMj6VoFSoKVvC2pNld2ZI2spsi_fcmxII35zIwPO_MPIxdA58AJ37HoRCg9HQCU4JupBALpBM2Ai0xF6g-Ttmoh_KeOmcXKW14V0g0Yrev0dlQtWH3mZXZ875uQ7u3Lmt8tgpbl725GFy6ZGe-rJO7-u1j9v5wv5o_5suXxdN8tswrQUWbE0dp0UopnNbdDyhoiuCBrwuvhddknZIIipQDtVYVOU2ie1CvpZZWgRyzYthbxSal6Lz5imFbxoMBbnpZc5Q1vaw5ynbBmyG4SW0T_6aE5GiEINRcddhswMLON3FbfjextqYtD3UTfSx3VUhG_nPqB_0IZCM</recordid><startdate>19810901</startdate><enddate>19810901</enddate><creator>Thisted, Ronald A.</creator><creator>Wecker, William E.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19810901</creationdate><title>Predicting a Multitude of Time Series</title><author>Thisted, Ronald A. ; Wecker, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Applications</topic><topic>Correlations</topic><topic>Estimate reliability</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Maximum likelihood estimation</topic><topic>Minimax</topic><topic>Modeling</topic><topic>Multiple time series</topic><topic>Shrinkage estimators</topic><topic>Standard deviation</topic><topic>Statistical variance</topic><topic>Stein estimators</topic><topic>Time series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thisted, Ronald A.</creatorcontrib><creatorcontrib>Wecker, William E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thisted, Ronald A.</au><au>Wecker, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting a Multitude of Time Series</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1981-09-01</date><risdate>1981</risdate><volume>76</volume><issue>375</issue><spage>516</spage><epage>523</epage><pages>516-523</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1981.10477678</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1981-09, Vol.76 (375), p.516-523
issn 0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_10_2307_2287504
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Applications
Correlations
Estimate reliability
Estimators
Estimators for the mean
Maximum likelihood estimation
Minimax
Modeling
Multiple time series
Shrinkage estimators
Standard deviation
Statistical variance
Stein estimators
Time series forecasting
title Predicting a Multitude of Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20a%20Multitude%20of%20Time%20Series&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Thisted,%20Ronald%20A.&rft.date=1981-09-01&rft.volume=76&rft.issue=375&rft.spage=516&rft.epage=523&rft.pages=516-523&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1981.10477678&rft_dat=%3Cjstor_cross%3E2287504%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2287504&rfr_iscdi=true