Predicting a Multitude of Time Series
Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1981-09, Vol.76 (375), p.516-523 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | 375 |
container_start_page | 516 |
container_title | Journal of the American Statistical Association |
container_volume | 76 |
creator | Thisted, Ronald A. Wecker, William E. |
description | Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting. |
doi_str_mv | 10.1080/01621459.1981.10477678 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2287504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2287504</jstor_id><sourcerecordid>2287504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</originalsourceid><addsrcrecordid>eNqFj01Lw0AQhhdRsFb_guSgx9Sd_chMj6VoFSoKVvC2pNld2ZI2spsi_fcmxII35zIwPO_MPIxdA58AJ37HoRCg9HQCU4JupBALpBM2Ai0xF6g-Ttmoh_KeOmcXKW14V0g0Yrev0dlQtWH3mZXZ875uQ7u3Lmt8tgpbl725GFy6ZGe-rJO7-u1j9v5wv5o_5suXxdN8tswrQUWbE0dp0UopnNbdDyhoiuCBrwuvhddknZIIipQDtVYVOU2ie1CvpZZWgRyzYthbxSal6Lz5imFbxoMBbnpZc5Q1vaw5ynbBmyG4SW0T_6aE5GiEINRcddhswMLON3FbfjextqYtD3UTfSx3VUhG_nPqB_0IZCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting a Multitude of Time Series</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Thisted, Ronald A. ; Wecker, William E.</creator><creatorcontrib>Thisted, Ronald A. ; Wecker, William E.</creatorcontrib><description>Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1981.10477678</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Applications ; Correlations ; Estimate reliability ; Estimators ; Estimators for the mean ; Maximum likelihood estimation ; Minimax ; Modeling ; Multiple time series ; Shrinkage estimators ; Standard deviation ; Statistical variance ; Stein estimators ; Time series forecasting</subject><ispartof>Journal of the American Statistical Association, 1981-09, Vol.76 (375), p.516-523</ispartof><rights>Copyright Taylor & Francis Group, LLC 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</citedby><cites>FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2287504$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2287504$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Thisted, Ronald A.</creatorcontrib><creatorcontrib>Wecker, William E.</creatorcontrib><title>Predicting a Multitude of Time Series</title><title>Journal of the American Statistical Association</title><description>Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.</description><subject>Applications</subject><subject>Correlations</subject><subject>Estimate reliability</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Maximum likelihood estimation</subject><subject>Minimax</subject><subject>Modeling</subject><subject>Multiple time series</subject><subject>Shrinkage estimators</subject><subject>Standard deviation</subject><subject>Statistical variance</subject><subject>Stein estimators</subject><subject>Time series forecasting</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AQhhdRsFb_guSgx9Sd_chMj6VoFSoKVvC2pNld2ZI2spsi_fcmxII35zIwPO_MPIxdA58AJ37HoRCg9HQCU4JupBALpBM2Ai0xF6g-Ttmoh_KeOmcXKW14V0g0Yrev0dlQtWH3mZXZ875uQ7u3Lmt8tgpbl725GFy6ZGe-rJO7-u1j9v5wv5o_5suXxdN8tswrQUWbE0dp0UopnNbdDyhoiuCBrwuvhddknZIIipQDtVYVOU2ie1CvpZZWgRyzYthbxSal6Lz5imFbxoMBbnpZc5Q1vaw5ynbBmyG4SW0T_6aE5GiEINRcddhswMLON3FbfjextqYtD3UTfSx3VUhG_nPqB_0IZCM</recordid><startdate>19810901</startdate><enddate>19810901</enddate><creator>Thisted, Ronald A.</creator><creator>Wecker, William E.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19810901</creationdate><title>Predicting a Multitude of Time Series</title><author>Thisted, Ronald A. ; Wecker, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-8073d7d332e55678728971f10b6f52f58de4371484e14b4c8e5822745b353d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Applications</topic><topic>Correlations</topic><topic>Estimate reliability</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Maximum likelihood estimation</topic><topic>Minimax</topic><topic>Modeling</topic><topic>Multiple time series</topic><topic>Shrinkage estimators</topic><topic>Standard deviation</topic><topic>Statistical variance</topic><topic>Stein estimators</topic><topic>Time series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thisted, Ronald A.</creatorcontrib><creatorcontrib>Wecker, William E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thisted, Ronald A.</au><au>Wecker, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting a Multitude of Time Series</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1981-09-01</date><risdate>1981</risdate><volume>76</volume><issue>375</issue><spage>516</spage><epage>523</epage><pages>516-523</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Principles for constructing estimators of the Stein type (shrinkage estimators) are discussed in general terms, with emphasis on underlying assumptions. The problem of parameter estimation and prediction for multiple time series is examined with these principles in mind, particularly for the case in which the number of time series is large and the number of observations from each series is small. Our results are applied to the problem of demand estimation in an inventory control setting.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1981.10477678</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1981-09, Vol.76 (375), p.516-523 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_10_2307_2287504 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Applications Correlations Estimate reliability Estimators Estimators for the mean Maximum likelihood estimation Minimax Modeling Multiple time series Shrinkage estimators Standard deviation Statistical variance Stein estimators Time series forecasting |
title | Predicting a Multitude of Time Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20a%20Multitude%20of%20Time%20Series&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Thisted,%20Ronald%20A.&rft.date=1981-09-01&rft.volume=76&rft.issue=375&rft.spage=516&rft.epage=523&rft.pages=516-523&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1981.10477678&rft_dat=%3Cjstor_cross%3E2287504%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2287504&rfr_iscdi=true |