How Many Variables Should Be Entered in a Regression Equation?
The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S p criterion provides an asymptotically optimal rule for the number of variables to enter.
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1983-03, Vol.78 (381), p.131-136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 381 |
container_start_page | 131 |
container_title | Journal of the American Statistical Association |
container_volume | 78 |
creator | Breiman, L. Freedman, D. |
description | The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S
p
criterion provides an asymptotically optimal rule for the number of variables to enter. |
doi_str_mv | 10.1080/01621459.1983.10477941 |
format | Article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2287119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2287119</jstor_id><sourcerecordid>2287119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQQJ63ZpJsk1yUWqpVqgI_sNbyO5mdct20ya7lH57s1TBm3OZYfi9ecxD6BzICIgkVwTGFHiqRqAkiysuhOJwgAaQMpFQwT8O0aCHkp46RichLEksIeUAXc_dFj-aZoffja9MVtuAX75cVxf41uJZ01pvC1w12OBn--ltCJVr8GzTmTYON6foqDR1sGc_fYje7mav03myeLp_mE4WSc6At0lmS0OUyRQoSoxRnEGa5wXhxGaWUq5SUuQZCCYKJhmVqbW0zBVIGn8SnLMhutjfXXu36Wxo9dJ1vomWGhhAfJinEKnxnsq9C8HbUq99tTJ-p4HoPiv9m5Xus9K_WUXh5V64DK3zf1WUEaEplQJARWyyx6qmdH5lts7XhW7Nrna-9KbJq6DZP1bfshF5ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311794451</pqid></control><display><type>article</type><title>How Many Variables Should Be Entered in a Regression Equation?</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Breiman, L. ; Freedman, D.</creator><creatorcontrib>Breiman, L. ; Freedman, D.</creatorcontrib><description>The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S
p
criterion provides an asymptotically optimal rule for the number of variables to enter.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1983.10477941</identifier><language>eng</language><publisher>Washington: Taylor & Francis Group</publisher><subject>Best subsets regression ; Error rates ; Linear regression ; Mathematical vectors ; Matrices ; Prediction error ; Probabilities ; Random errors ; Regression ; Statistical theories ; Statistical variance ; Statistics ; Stepwise regression ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 1983-03, Vol.78 (381), p.131-136</ispartof><rights>Copyright Taylor & Francis Group, LLC 1983</rights><rights>Copyright 1983 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</citedby><cites>FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2287119$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2287119$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27850,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Breiman, L.</creatorcontrib><creatorcontrib>Freedman, D.</creatorcontrib><title>How Many Variables Should Be Entered in a Regression Equation?</title><title>Journal of the American Statistical Association</title><description>The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S
p
criterion provides an asymptotically optimal rule for the number of variables to enter.</description><subject>Best subsets regression</subject><subject>Error rates</subject><subject>Linear regression</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Prediction error</subject><subject>Probabilities</subject><subject>Random errors</subject><subject>Regression</subject><subject>Statistical theories</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stepwise regression</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkE9LAzEQxYMoWKtfQQJ63ZpJsk1yUWqpVqgI_sNbyO5mdct20ya7lH57s1TBm3OZYfi9ecxD6BzICIgkVwTGFHiqRqAkiysuhOJwgAaQMpFQwT8O0aCHkp46RichLEksIeUAXc_dFj-aZoffja9MVtuAX75cVxf41uJZ01pvC1w12OBn--ltCJVr8GzTmTYON6foqDR1sGc_fYje7mav03myeLp_mE4WSc6At0lmS0OUyRQoSoxRnEGa5wXhxGaWUq5SUuQZCCYKJhmVqbW0zBVIGn8SnLMhutjfXXu36Wxo9dJ1vomWGhhAfJinEKnxnsq9C8HbUq99tTJ-p4HoPiv9m5Xus9K_WUXh5V64DK3zf1WUEaEplQJARWyyx6qmdH5lts7XhW7Nrna-9KbJq6DZP1bfshF5ow</recordid><startdate>19830301</startdate><enddate>19830301</enddate><creator>Breiman, L.</creator><creator>Freedman, D.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19830301</creationdate><title>How Many Variables Should Be Entered in a Regression Equation?</title><author>Breiman, L. ; Freedman, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Best subsets regression</topic><topic>Error rates</topic><topic>Linear regression</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Prediction error</topic><topic>Probabilities</topic><topic>Random errors</topic><topic>Regression</topic><topic>Statistical theories</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stepwise regression</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breiman, L.</creatorcontrib><creatorcontrib>Freedman, D.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breiman, L.</au><au>Freedman, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Many Variables Should Be Entered in a Regression Equation?</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1983-03-01</date><risdate>1983</risdate><volume>78</volume><issue>381</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S
p
criterion provides an asymptotically optimal rule for the number of variables to enter.</abstract><cop>Washington</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1983.10477941</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1983-03, Vol.78 (381), p.131-136 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_10_2307_2287119 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Best subsets regression Error rates Linear regression Mathematical vectors Matrices Prediction error Probabilities Random errors Regression Statistical theories Statistical variance Statistics Stepwise regression Theory and Methods |
title | How Many Variables Should Be Entered in a Regression Equation? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Many%20Variables%20Should%20Be%20Entered%20in%20a%20Regression%20Equation?&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Breiman,%20L.&rft.date=1983-03-01&rft.volume=78&rft.issue=381&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1983.10477941&rft_dat=%3Cjstor_infor%3E2287119%3C/jstor_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311794451&rft_id=info:pmid/&rft_jstor_id=2287119&rfr_iscdi=true |