How Many Variables Should Be Entered in a Regression Equation?

The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S p criterion provides an asymptotically optimal rule for the number of variables to enter.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1983-03, Vol.78 (381), p.131-136
Hauptverfasser: Breiman, L., Freedman, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 381
container_start_page 131
container_title Journal of the American Statistical Association
container_volume 78
creator Breiman, L.
Freedman, D.
description The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S p criterion provides an asymptotically optimal rule for the number of variables to enter.
doi_str_mv 10.1080/01621459.1983.10477941
format Article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2287119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2287119</jstor_id><sourcerecordid>2287119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQQJ63ZpJsk1yUWqpVqgI_sNbyO5mdct20ya7lH57s1TBm3OZYfi9ecxD6BzICIgkVwTGFHiqRqAkiysuhOJwgAaQMpFQwT8O0aCHkp46RichLEksIeUAXc_dFj-aZoffja9MVtuAX75cVxf41uJZ01pvC1w12OBn--ltCJVr8GzTmTYON6foqDR1sGc_fYje7mav03myeLp_mE4WSc6At0lmS0OUyRQoSoxRnEGa5wXhxGaWUq5SUuQZCCYKJhmVqbW0zBVIGn8SnLMhutjfXXu36Wxo9dJ1vomWGhhAfJinEKnxnsq9C8HbUq99tTJ-p4HoPiv9m5Xus9K_WUXh5V64DK3zf1WUEaEplQJARWyyx6qmdH5lts7XhW7Nrna-9KbJq6DZP1bfshF5ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311794451</pqid></control><display><type>article</type><title>How Many Variables Should Be Entered in a Regression Equation?</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Breiman, L. ; Freedman, D.</creator><creatorcontrib>Breiman, L. ; Freedman, D.</creatorcontrib><description>The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S p criterion provides an asymptotically optimal rule for the number of variables to enter.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1983.10477941</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Group</publisher><subject>Best subsets regression ; Error rates ; Linear regression ; Mathematical vectors ; Matrices ; Prediction error ; Probabilities ; Random errors ; Regression ; Statistical theories ; Statistical variance ; Statistics ; Stepwise regression ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 1983-03, Vol.78 (381), p.131-136</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1983</rights><rights>Copyright 1983 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</citedby><cites>FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2287119$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2287119$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27850,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Breiman, L.</creatorcontrib><creatorcontrib>Freedman, D.</creatorcontrib><title>How Many Variables Should Be Entered in a Regression Equation?</title><title>Journal of the American Statistical Association</title><description>The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S p criterion provides an asymptotically optimal rule for the number of variables to enter.</description><subject>Best subsets regression</subject><subject>Error rates</subject><subject>Linear regression</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Prediction error</subject><subject>Probabilities</subject><subject>Random errors</subject><subject>Regression</subject><subject>Statistical theories</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stepwise regression</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkE9LAzEQxYMoWKtfQQJ63ZpJsk1yUWqpVqgI_sNbyO5mdct20ya7lH57s1TBm3OZYfi9ecxD6BzICIgkVwTGFHiqRqAkiysuhOJwgAaQMpFQwT8O0aCHkp46RichLEksIeUAXc_dFj-aZoffja9MVtuAX75cVxf41uJZ01pvC1w12OBn--ltCJVr8GzTmTYON6foqDR1sGc_fYje7mav03myeLp_mE4WSc6At0lmS0OUyRQoSoxRnEGa5wXhxGaWUq5SUuQZCCYKJhmVqbW0zBVIGn8SnLMhutjfXXu36Wxo9dJ1vomWGhhAfJinEKnxnsq9C8HbUq99tTJ-p4HoPiv9m5Xus9K_WUXh5V64DK3zf1WUEaEplQJARWyyx6qmdH5lts7XhW7Nrna-9KbJq6DZP1bfshF5ow</recordid><startdate>19830301</startdate><enddate>19830301</enddate><creator>Breiman, L.</creator><creator>Freedman, D.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19830301</creationdate><title>How Many Variables Should Be Entered in a Regression Equation?</title><author>Breiman, L. ; Freedman, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-befa09ab91920aa94315ccd040ebe224950dcb1737d383285ee2fc91821987443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Best subsets regression</topic><topic>Error rates</topic><topic>Linear regression</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Prediction error</topic><topic>Probabilities</topic><topic>Random errors</topic><topic>Regression</topic><topic>Statistical theories</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stepwise regression</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breiman, L.</creatorcontrib><creatorcontrib>Freedman, D.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breiman, L.</au><au>Freedman, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Many Variables Should Be Entered in a Regression Equation?</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1983-03-01</date><risdate>1983</risdate><volume>78</volume><issue>381</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>The optimal number of regressors is determined to minimize mean squared prediction error and is shown to be a small fraction of the number of data points. As the number of regressors grows large, the S p criterion provides an asymptotically optimal rule for the number of variables to enter.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1983.10477941</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1983-03, Vol.78 (381), p.131-136
issn 0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_10_2307_2287119
source Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Best subsets regression
Error rates
Linear regression
Mathematical vectors
Matrices
Prediction error
Probabilities
Random errors
Regression
Statistical theories
Statistical variance
Statistics
Stepwise regression
Theory and Methods
title How Many Variables Should Be Entered in a Regression Equation?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Many%20Variables%20Should%20Be%20Entered%20in%20a%20Regression%20Equation?&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Breiman,%20L.&rft.date=1983-03-01&rft.volume=78&rft.issue=381&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1983.10477941&rft_dat=%3Cjstor_infor%3E2287119%3C/jstor_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311794451&rft_id=info:pmid/&rft_jstor_id=2287119&rfr_iscdi=true