The Entire NS Ideal on Pγ μ can be Precipitous
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1997-12, Vol.62 (4), p.1161-1172 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1172 |
---|---|
container_issue | 4 |
container_start_page | 1161 |
container_title | The Journal of symbolic logic |
container_volume | 62 |
creator | Goldring, Noa |
description | |
doi_str_mv | 10.2307/2275633 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2275633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2275633</jstor_id><sourcerecordid>2275633</sourcerecordid><originalsourceid>FETCH-LOGICAL-j114t-35dcf51301d5070b210df44380811f94a21577602e5a34b5a38061138a7b65f33</originalsourceid><addsrcrecordid>eNotjzFOwzAUQD0UidIirvAH1sD__nbsjqgqUKlqK7XMkZPYaqKSVHYYOBcrZ-iZANHlve1JT4g7wgfJaB6lNDpnHokxopSZsiSvxU1KLSLqmbJjgfuDh0U3NNHDegfL2rsj9B1sz19w_obKdVB62EZfNadm6D_SVFwFd0z-9uKJeHte7Oev2Wrzspw_rbKWSA0Z67oKmhip1miwlIR1UIotWqIwU06SNiZH6bVjVf7CYk7E1pky14F5Iu7_u20a-licYvPu4mdBWPydFZcz_gFxkj8b</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Entire NS Ideal on Pγ μ can be Precipitous</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Goldring, Noa</creator><creatorcontrib>Goldring, Noa</creatorcontrib><identifier>ISSN: 0022-4812</identifier><identifier>DOI: 10.2307/2275633</identifier><language>eng</language><publisher>Association for Symbolic Logic, Inc</publisher><subject>Bogs ; Branches ; Cardinality ; Increasing sequences ; Logical theorems ; Mathematical functions ; Mathematical logic ; Mathematical sequences ; Stationary sets</subject><ispartof>The Journal of symbolic logic, 1997-12, Vol.62 (4), p.1161-1172</ispartof><rights>Copyright 1997 Association for Symbolic Logic, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2275633$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2275633$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Goldring, Noa</creatorcontrib><title>The Entire NS Ideal on Pγ μ can be Precipitous</title><title>The Journal of symbolic logic</title><subject>Bogs</subject><subject>Branches</subject><subject>Cardinality</subject><subject>Increasing sequences</subject><subject>Logical theorems</subject><subject>Mathematical functions</subject><subject>Mathematical logic</subject><subject>Mathematical sequences</subject><subject>Stationary sets</subject><issn>0022-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjzFOwzAUQD0UidIirvAH1sD__nbsjqgqUKlqK7XMkZPYaqKSVHYYOBcrZ-iZANHlve1JT4g7wgfJaB6lNDpnHokxopSZsiSvxU1KLSLqmbJjgfuDh0U3NNHDegfL2rsj9B1sz19w_obKdVB62EZfNadm6D_SVFwFd0z-9uKJeHte7Oev2Wrzspw_rbKWSA0Z67oKmhip1miwlIR1UIotWqIwU06SNiZH6bVjVf7CYk7E1pky14F5Iu7_u20a-licYvPu4mdBWPydFZcz_gFxkj8b</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Goldring, Noa</creator><general>Association for Symbolic Logic, Inc</general><scope/></search><sort><creationdate>19971201</creationdate><title>The Entire NS Ideal on Pγ μ can be Precipitous</title><author>Goldring, Noa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j114t-35dcf51301d5070b210df44380811f94a21577602e5a34b5a38061138a7b65f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Bogs</topic><topic>Branches</topic><topic>Cardinality</topic><topic>Increasing sequences</topic><topic>Logical theorems</topic><topic>Mathematical functions</topic><topic>Mathematical logic</topic><topic>Mathematical sequences</topic><topic>Stationary sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldring, Noa</creatorcontrib><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldring, Noa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Entire NS Ideal on Pγ μ can be Precipitous</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>62</volume><issue>4</issue><spage>1161</spage><epage>1172</epage><pages>1161-1172</pages><issn>0022-4812</issn><pub>Association for Symbolic Logic, Inc</pub><doi>10.2307/2275633</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 1997-12, Vol.62 (4), p.1161-1172 |
issn | 0022-4812 |
language | eng |
recordid | cdi_jstor_primary_10_2307_2275633 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Bogs Branches Cardinality Increasing sequences Logical theorems Mathematical functions Mathematical logic Mathematical sequences Stationary sets |
title | The Entire NS Ideal on Pγ μ can be Precipitous |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Entire%20NS%20Ideal%20on%20P%CE%B3%20%CE%BC%20can%20be%20Precipitous&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Goldring,%20Noa&rft.date=1997-12-01&rft.volume=62&rft.issue=4&rft.spage=1161&rft.epage=1172&rft.pages=1161-1172&rft.issn=0022-4812&rft_id=info:doi/10.2307/2275633&rft_dat=%3Cjstor%3E2275633%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2275633&rfr_iscdi=true |