A Precomposition Analysis of Linear Operators on lp

Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precompos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 1991-01, Vol.111 (1), p.227-233
1. Verfasser: Hudson, Steve M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 1
container_start_page 227
container_title Proceedings of the American Mathematical Society
container_volume 111
creator Hudson, Steve M.
description Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.
doi_str_mv 10.2307/2047882
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2047882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2047882</jstor_id><sourcerecordid>2047882</sourcerecordid><originalsourceid>FETCH-LOGICAL-j114t-194e9e61fa6f5c0bb912318f3374fbcc17add3bf60e57033707d8931f70cd6683</originalsourceid><addsrcrecordid>eNotj81KxDAYRYMoWEfxFbJwG_2-pJOfZRn8g8K40HVJ0wRSOk1Jupm3t-KsLvcu7uEQ8ojwzAWoFw610ppfkQpBayY1l9ekAgDOjBHmltyVMm4VTa0qIhr6lb1LpyWVuMY002a207nEQlOgbZy9zfS4-GzXlLdtptNyT26CnYp_uOSO_Ly9fh8-WHt8_zw0LRsR65VtAG-8xGBl2Dvoe4NcoA5CqDr0zqGywyD6IMHvFWwrqEEbgUGBG6TUYkee_n_HssG7JceTzecOofsT7S6i4hemH0N8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Precomposition Analysis of Linear Operators on lp</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Mathematics and Statistics</source><source>American Mathematical Society Publications</source><source>Free E-Journal (出版社公開部分のみ)</source><source>JSTOR</source><creator>Hudson, Steve M.</creator><creatorcontrib>Hudson, Steve M.</creatorcontrib><description>Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.2307/2047882</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Approximation ; Integers ; Linear transformations ; Mathematical functions ; Mathematical theorems</subject><ispartof>Proceedings of the American Mathematical Society, 1991-01, Vol.111 (1), p.227-233</ispartof><rights>Copyright 1991 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2047882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2047882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Hudson, Steve M.</creatorcontrib><title>A Precomposition Analysis of Linear Operators on lp</title><title>Proceedings of the American Mathematical Society</title><description>Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.</description><subject>Approximation</subject><subject>Integers</subject><subject>Linear transformations</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj81KxDAYRYMoWEfxFbJwG_2-pJOfZRn8g8K40HVJ0wRSOk1Jupm3t-KsLvcu7uEQ8ojwzAWoFw610ppfkQpBayY1l9ekAgDOjBHmltyVMm4VTa0qIhr6lb1LpyWVuMY002a207nEQlOgbZy9zfS4-GzXlLdtptNyT26CnYp_uOSO_Ly9fh8-WHt8_zw0LRsR65VtAG-8xGBl2Dvoe4NcoA5CqDr0zqGywyD6IMHvFWwrqEEbgUGBG6TUYkee_n_HssG7JceTzecOofsT7S6i4hemH0N8</recordid><startdate>19910101</startdate><enddate>19910101</enddate><creator>Hudson, Steve M.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>19910101</creationdate><title>A Precomposition Analysis of Linear Operators on lp</title><author>Hudson, Steve M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j114t-194e9e61fa6f5c0bb912318f3374fbcc17add3bf60e57033707d8931f70cd6683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Approximation</topic><topic>Integers</topic><topic>Linear transformations</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudson, Steve M.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudson, Steve M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Precomposition Analysis of Linear Operators on lp</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1991-01-01</date><risdate>1991</risdate><volume>111</volume><issue>1</issue><spage>227</spage><epage>233</epage><pages>227-233</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.</abstract><pub>American Mathematical Society</pub><doi>10.2307/2047882</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 1991-01, Vol.111 (1), p.227-233
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_10_2307_2047882
source American Mathematical Society Publications - Open Access; JSTOR Mathematics and Statistics; American Mathematical Society Publications; Free E-Journal (出版社公開部分のみ); JSTOR
subjects Approximation
Integers
Linear transformations
Mathematical functions
Mathematical theorems
title A Precomposition Analysis of Linear Operators on lp
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Precomposition%20Analysis%20of%20Linear%20Operators%20on%20lp&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Hudson,%20Steve%20M.&rft.date=1991-01-01&rft.volume=111&rft.issue=1&rft.spage=227&rft.epage=233&rft.pages=227-233&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.2307/2047882&rft_dat=%3Cjstor%3E2047882%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2047882&rfr_iscdi=true