A Precomposition Analysis of Linear Operators on lp
Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precompos...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1991-01, Vol.111 (1), p.227-233 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 111 |
creator | Hudson, Steve M. |
description | Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated. |
doi_str_mv | 10.2307/2047882 |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2047882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2047882</jstor_id><sourcerecordid>2047882</sourcerecordid><originalsourceid>FETCH-LOGICAL-j114t-194e9e61fa6f5c0bb912318f3374fbcc17add3bf60e57033707d8931f70cd6683</originalsourceid><addsrcrecordid>eNotj81KxDAYRYMoWEfxFbJwG_2-pJOfZRn8g8K40HVJ0wRSOk1Jupm3t-KsLvcu7uEQ8ojwzAWoFw610ppfkQpBayY1l9ekAgDOjBHmltyVMm4VTa0qIhr6lb1LpyWVuMY002a207nEQlOgbZy9zfS4-GzXlLdtptNyT26CnYp_uOSO_Ly9fh8-WHt8_zw0LRsR65VtAG-8xGBl2Dvoe4NcoA5CqDr0zqGywyD6IMHvFWwrqEEbgUGBG6TUYkee_n_HssG7JceTzecOofsT7S6i4hemH0N8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Precomposition Analysis of Linear Operators on lp</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Mathematics and Statistics</source><source>American Mathematical Society Publications</source><source>Free E-Journal (出版社公開部分のみ)</source><source>JSTOR</source><creator>Hudson, Steve M.</creator><creatorcontrib>Hudson, Steve M.</creatorcontrib><description>Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.2307/2047882</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Approximation ; Integers ; Linear transformations ; Mathematical functions ; Mathematical theorems</subject><ispartof>Proceedings of the American Mathematical Society, 1991-01, Vol.111 (1), p.227-233</ispartof><rights>Copyright 1991 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2047882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2047882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Hudson, Steve M.</creatorcontrib><title>A Precomposition Analysis of Linear Operators on lp</title><title>Proceedings of the American Mathematical Society</title><description>Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.</description><subject>Approximation</subject><subject>Integers</subject><subject>Linear transformations</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj81KxDAYRYMoWEfxFbJwG_2-pJOfZRn8g8K40HVJ0wRSOk1Jupm3t-KsLvcu7uEQ8ojwzAWoFw610ppfkQpBayY1l9ekAgDOjBHmltyVMm4VTa0qIhr6lb1LpyWVuMY002a207nEQlOgbZy9zfS4-GzXlLdtptNyT26CnYp_uOSO_Ly9fh8-WHt8_zw0LRsR65VtAG-8xGBl2Dvoe4NcoA5CqDr0zqGywyD6IMHvFWwrqEEbgUGBG6TUYkee_n_HssG7JceTzecOofsT7S6i4hemH0N8</recordid><startdate>19910101</startdate><enddate>19910101</enddate><creator>Hudson, Steve M.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>19910101</creationdate><title>A Precomposition Analysis of Linear Operators on lp</title><author>Hudson, Steve M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j114t-194e9e61fa6f5c0bb912318f3374fbcc17add3bf60e57033707d8931f70cd6683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Approximation</topic><topic>Integers</topic><topic>Linear transformations</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudson, Steve M.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudson, Steve M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Precomposition Analysis of Linear Operators on lp</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1991-01-01</date><risdate>1991</risdate><volume>111</volume><issue>1</issue><spage>227</spage><epage>233</epage><pages>227-233</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Given a function g, the operator that sends the function f(x) to the function f(g(x)) is called a precomposition operator. If g preserves measure on its domain, at least approximately, then this operator is bounded on all the Lpspaces. We ask which operators can be written as an average of precomposition operators. We give sufficient, almost necessary conditions for such a representation when the domain is a finite set. The class of operators studied approximate many commonly used positive operators defined on Lpof the real line, such as maximal operators. A major tool is the combinatorial theorem of distinct representatives, commonly called the marriage theorem. A strong connection between this theorem and operators of weak-type 1 is demonstrated.</abstract><pub>American Mathematical Society</pub><doi>10.2307/2047882</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 1991-01, Vol.111 (1), p.227-233 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_jstor_primary_10_2307_2047882 |
source | American Mathematical Society Publications - Open Access; JSTOR Mathematics and Statistics; American Mathematical Society Publications; Free E-Journal (出版社公開部分のみ); JSTOR |
subjects | Approximation Integers Linear transformations Mathematical functions Mathematical theorems |
title | A Precomposition Analysis of Linear Operators on lp |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Precomposition%20Analysis%20of%20Linear%20Operators%20on%20lp&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Hudson,%20Steve%20M.&rft.date=1991-01-01&rft.volume=111&rft.issue=1&rft.spage=227&rft.epage=233&rft.pages=227-233&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.2307/2047882&rft_dat=%3Cjstor%3E2047882%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2047882&rfr_iscdi=true |