Redshift Estimation from Low‐Resolution Prism Spectral Energy Distributions with aNext Generation Space TelescopeMultiobject Spectrograph

We discuss the utility of a low‐resolution prism as a component of a multiobject spectrometer for NASA’s proposedNext Generation Space Telescope(NGST). Low‐resolution prism spectroscopy permits simultaneous observation of the 0.6–5 μm wavelength regime at \documentclass{aastex} \usepackage{amsbsy} \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2000-09, Vol.112 (775), p.1188-1199
Hauptverfasser: Teplitz, Harry I., Malumuth, Eliot, Woodgate, Bruce E., Moseley, S. Harvey, Gardner, Jonathan P., Kimble, Randy A., Bowers, Charles W., Kutyrev, Alexander S., Fettig, Rainer K., Wesenberg, Richard P., Mentzell, Eric E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1199
container_issue 775
container_start_page 1188
container_title Publications of the Astronomical Society of the Pacific
container_volume 112
creator Teplitz, Harry I.
Malumuth, Eliot
Woodgate, Bruce E.
Moseley, S. Harvey
Gardner, Jonathan P.
Kimble, Randy A.
Bowers, Charles W.
Kutyrev, Alexander S.
Fettig, Rainer K.
Wesenberg, Richard P.
Mentzell, Eric E.
description We discuss the utility of a low‐resolution prism as a component of a multiobject spectrometer for NASA’s proposedNext Generation Space Telescope(NGST). Low‐resolution prism spectroscopy permits simultaneous observation of the 0.6–5 μm wavelength regime at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R\lesssim 50$ \end{document} . Such data can take advantage of modern techniques in spectral energy distribution (SED) fitting to determine source redshifts, sometimes called “photometric redshifts.” We compare simulated prism observations with filter imaging for this purpose withNGST. Low‐resolution prism observations of galaxy SEDs provide a significant advantage over multifilter observations for any realistic observing strategy. For an ideal prism in sky background–limited observing, the prism has a signal‐to‐noise ratio advantage of the square root of the resolution over serial observations by filters with similar spatial and spectral resolution in equal integration time. For a realistic case the advantage is slightly less, and we have performed extensive simulations to quantify it. We define strict criteria for the recovery of input redshifts, such that to be considered a success, redshift residuals must be \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\delta _{z}< 0.03+0.1\mathrm{log}\,z$ \end{document} . The simulations suggest that in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryr
doi_str_mv 10.1086/316619
format Article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_10_1086_316619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/316619</jstor_id><sourcerecordid>10.1086/316619</sourcerecordid><originalsourceid>FETCH-LOGICAL-j609-4c32927ca0c8a5564b67eca1b99caebdcad25e7b0a6a4ea19d4b4e9eee809f633</originalsourceid><addsrcrecordid>eNotkN9KwzAchYMoOKc-Q8DratK0aXIpc05h_mHbfUnSX7eUbilJhu7Oe298Rp_Euu3qwOHwwfkQuqbklhLB7xjlnMoTNKA5EwkTBTtFA0JIlvBUkHN0EUJDCKWCkgH6nkEVVraOeByiXato3QbX3q3x1H38fv3MILh2u2_fvQ1rPO_ARK9aPN6AX-7wgw3RW72fBPxh4wqrV_iMeAL94MCbd8oAXkALwbgOXrZtX-umBx1xbulVt7pEZ7VqA1wdc4gWj-PF6CmZvk2eR_fTpOFEJplhqUwLo4gRKs95pnkBRlEtpVGgK6OqNIdCE8VVBorKKtMZSAAQRNacsSG6OWCbEJ0vO9_f9ruSkvJfX3nQx_4A9YtnbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Redshift Estimation from Low‐Resolution Prism Spectral Energy Distributions with aNext Generation Space TelescopeMultiobject Spectrograph</title><source>IOP Publishing Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Teplitz, Harry I. ; Malumuth, Eliot ; Woodgate, Bruce E. ; Moseley, S. Harvey ; Gardner, Jonathan P. ; Kimble, Randy A. ; Bowers, Charles W. ; Kutyrev, Alexander S. ; Fettig, Rainer K. ; Wesenberg, Richard P. ; Mentzell, Eric E.</creator><creatorcontrib>Teplitz, Harry I. ; Malumuth, Eliot ; Woodgate, Bruce E. ; Moseley, S. Harvey ; Gardner, Jonathan P. ; Kimble, Randy A. ; Bowers, Charles W. ; Kutyrev, Alexander S. ; Fettig, Rainer K. ; Wesenberg, Richard P. ; Mentzell, Eric E.</creatorcontrib><description>We discuss the utility of a low‐resolution prism as a component of a multiobject spectrometer for NASA’s proposedNext Generation Space Telescope(NGST). Low‐resolution prism spectroscopy permits simultaneous observation of the 0.6–5 μm wavelength regime at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R\lesssim 50$ \end{document} . Such data can take advantage of modern techniques in spectral energy distribution (SED) fitting to determine source redshifts, sometimes called “photometric redshifts.” We compare simulated prism observations with filter imaging for this purpose withNGST. Low‐resolution prism observations of galaxy SEDs provide a significant advantage over multifilter observations for any realistic observing strategy. For an ideal prism in sky background–limited observing, the prism has a signal‐to‐noise ratio advantage of the square root of the resolution over serial observations by filters with similar spatial and spectral resolution in equal integration time. For a realistic case the advantage is slightly less, and we have performed extensive simulations to quantify it. We define strict criteria for the recovery of input redshifts, such that to be considered a success, redshift residuals must be \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\delta _{z}&lt; 0.03+0.1\mathrm{log}\,z$ \end{document} . The simulations suggest that in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $10^{5}$ \end{document} s, a realistic prism will recover (by our definition of success) the redshift of ∼70% of measured objects (subject to multiobject spectrograph selection) at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K_{\mathrm{AB}\,}&lt; 32$ \end{document} , compared to less than 45% of the objects with serial filter observations. The advantage of the prism is larger in the regime of faint ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K_{\mathrm{AB}\,}&gt; 30$ \end{document} ) objects at high redshift ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $z&gt; 4$ \end{document} ), where the prism recovers 80% of redshifts, while the filters recover barely 35% to similar accuracy. The primary discovery space ofNGSTwill be at the faintest magnitudes and the highest redshifts. Many important objects will be too faint for follow‐up at higher spectral resolution, so prism observations are the optimal technique to study them. Prism observations also reduce the contamination of high‐redshift samples by lower redshift interlopers.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1086/316619</identifier><language>eng</language><publisher>The University of Chicago Press</publisher><subject>Astronomical objects ; Background noise ; Galaxies ; Imaging ; Noise spectra ; Optical filters ; Pixels ; Red shift ; Spectroscopy ; Wavelengths</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2000-09, Vol.112 (775), p.1188-1199</ispartof><rights>2000. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,27924,27925</link.rule.ids></links><search><creatorcontrib>Teplitz, Harry I.</creatorcontrib><creatorcontrib>Malumuth, Eliot</creatorcontrib><creatorcontrib>Woodgate, Bruce E.</creatorcontrib><creatorcontrib>Moseley, S. Harvey</creatorcontrib><creatorcontrib>Gardner, Jonathan P.</creatorcontrib><creatorcontrib>Kimble, Randy A.</creatorcontrib><creatorcontrib>Bowers, Charles W.</creatorcontrib><creatorcontrib>Kutyrev, Alexander S.</creatorcontrib><creatorcontrib>Fettig, Rainer K.</creatorcontrib><creatorcontrib>Wesenberg, Richard P.</creatorcontrib><creatorcontrib>Mentzell, Eric E.</creatorcontrib><title>Redshift Estimation from Low‐Resolution Prism Spectral Energy Distributions with aNext Generation Space TelescopeMultiobject Spectrograph</title><title>Publications of the Astronomical Society of the Pacific</title><description>We discuss the utility of a low‐resolution prism as a component of a multiobject spectrometer for NASA’s proposedNext Generation Space Telescope(NGST). Low‐resolution prism spectroscopy permits simultaneous observation of the 0.6–5 μm wavelength regime at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R\lesssim 50$ \end{document} . Such data can take advantage of modern techniques in spectral energy distribution (SED) fitting to determine source redshifts, sometimes called “photometric redshifts.” We compare simulated prism observations with filter imaging for this purpose withNGST. Low‐resolution prism observations of galaxy SEDs provide a significant advantage over multifilter observations for any realistic observing strategy. For an ideal prism in sky background–limited observing, the prism has a signal‐to‐noise ratio advantage of the square root of the resolution over serial observations by filters with similar spatial and spectral resolution in equal integration time. For a realistic case the advantage is slightly less, and we have performed extensive simulations to quantify it. We define strict criteria for the recovery of input redshifts, such that to be considered a success, redshift residuals must be \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\delta _{z}&lt; 0.03+0.1\mathrm{log}\,z$ \end{document} . The simulations suggest that in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $10^{5}$ \end{document} s, a realistic prism will recover (by our definition of success) the redshift of ∼70% of measured objects (subject to multiobject spectrograph selection) at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K_{\mathrm{AB}\,}&lt; 32$ \end{document} , compared to less than 45% of the objects with serial filter observations. The advantage of the prism is larger in the regime of faint ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K_{\mathrm{AB}\,}&gt; 30$ \end{document} ) objects at high redshift ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $z&gt; 4$ \end{document} ), where the prism recovers 80% of redshifts, while the filters recover barely 35% to similar accuracy. The primary discovery space ofNGSTwill be at the faintest magnitudes and the highest redshifts. Many important objects will be too faint for follow‐up at higher spectral resolution, so prism observations are the optimal technique to study them. Prism observations also reduce the contamination of high‐redshift samples by lower redshift interlopers.</description><subject>Astronomical objects</subject><subject>Background noise</subject><subject>Galaxies</subject><subject>Imaging</subject><subject>Noise spectra</subject><subject>Optical filters</subject><subject>Pixels</subject><subject>Red shift</subject><subject>Spectroscopy</subject><subject>Wavelengths</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkN9KwzAchYMoOKc-Q8DratK0aXIpc05h_mHbfUnSX7eUbilJhu7Oe298Rp_Euu3qwOHwwfkQuqbklhLB7xjlnMoTNKA5EwkTBTtFA0JIlvBUkHN0EUJDCKWCkgH6nkEVVraOeByiXato3QbX3q3x1H38fv3MILh2u2_fvQ1rPO_ARK9aPN6AX-7wgw3RW72fBPxh4wqrV_iMeAL94MCbd8oAXkALwbgOXrZtX-umBx1xbulVt7pEZ7VqA1wdc4gWj-PF6CmZvk2eR_fTpOFEJplhqUwLo4gRKs95pnkBRlEtpVGgK6OqNIdCE8VVBorKKtMZSAAQRNacsSG6OWCbEJ0vO9_f9ruSkvJfX3nQx_4A9YtnbQ</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Teplitz, Harry I.</creator><creator>Malumuth, Eliot</creator><creator>Woodgate, Bruce E.</creator><creator>Moseley, S. Harvey</creator><creator>Gardner, Jonathan P.</creator><creator>Kimble, Randy A.</creator><creator>Bowers, Charles W.</creator><creator>Kutyrev, Alexander S.</creator><creator>Fettig, Rainer K.</creator><creator>Wesenberg, Richard P.</creator><creator>Mentzell, Eric E.</creator><general>The University of Chicago Press</general><scope/></search><sort><creationdate>200009</creationdate><title>Redshift Estimation from Low‐Resolution Prism Spectral Energy Distributions with aNext Generation Space TelescopeMultiobject Spectrograph</title><author>Teplitz, Harry I. ; Malumuth, Eliot ; Woodgate, Bruce E. ; Moseley, S. Harvey ; Gardner, Jonathan P. ; Kimble, Randy A. ; Bowers, Charles W. ; Kutyrev, Alexander S. ; Fettig, Rainer K. ; Wesenberg, Richard P. ; Mentzell, Eric E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j609-4c32927ca0c8a5564b67eca1b99caebdcad25e7b0a6a4ea19d4b4e9eee809f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Astronomical objects</topic><topic>Background noise</topic><topic>Galaxies</topic><topic>Imaging</topic><topic>Noise spectra</topic><topic>Optical filters</topic><topic>Pixels</topic><topic>Red shift</topic><topic>Spectroscopy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teplitz, Harry I.</creatorcontrib><creatorcontrib>Malumuth, Eliot</creatorcontrib><creatorcontrib>Woodgate, Bruce E.</creatorcontrib><creatorcontrib>Moseley, S. Harvey</creatorcontrib><creatorcontrib>Gardner, Jonathan P.</creatorcontrib><creatorcontrib>Kimble, Randy A.</creatorcontrib><creatorcontrib>Bowers, Charles W.</creatorcontrib><creatorcontrib>Kutyrev, Alexander S.</creatorcontrib><creatorcontrib>Fettig, Rainer K.</creatorcontrib><creatorcontrib>Wesenberg, Richard P.</creatorcontrib><creatorcontrib>Mentzell, Eric E.</creatorcontrib><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teplitz, Harry I.</au><au>Malumuth, Eliot</au><au>Woodgate, Bruce E.</au><au>Moseley, S. Harvey</au><au>Gardner, Jonathan P.</au><au>Kimble, Randy A.</au><au>Bowers, Charles W.</au><au>Kutyrev, Alexander S.</au><au>Fettig, Rainer K.</au><au>Wesenberg, Richard P.</au><au>Mentzell, Eric E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redshift Estimation from Low‐Resolution Prism Spectral Energy Distributions with aNext Generation Space TelescopeMultiobject Spectrograph</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2000-09</date><risdate>2000</risdate><volume>112</volume><issue>775</issue><spage>1188</spage><epage>1199</epage><pages>1188-1199</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>We discuss the utility of a low‐resolution prism as a component of a multiobject spectrometer for NASA’s proposedNext Generation Space Telescope(NGST). Low‐resolution prism spectroscopy permits simultaneous observation of the 0.6–5 μm wavelength regime at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R\lesssim 50$ \end{document} . Such data can take advantage of modern techniques in spectral energy distribution (SED) fitting to determine source redshifts, sometimes called “photometric redshifts.” We compare simulated prism observations with filter imaging for this purpose withNGST. Low‐resolution prism observations of galaxy SEDs provide a significant advantage over multifilter observations for any realistic observing strategy. For an ideal prism in sky background–limited observing, the prism has a signal‐to‐noise ratio advantage of the square root of the resolution over serial observations by filters with similar spatial and spectral resolution in equal integration time. For a realistic case the advantage is slightly less, and we have performed extensive simulations to quantify it. We define strict criteria for the recovery of input redshifts, such that to be considered a success, redshift residuals must be \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\delta _{z}&lt; 0.03+0.1\mathrm{log}\,z$ \end{document} . The simulations suggest that in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $10^{5}$ \end{document} s, a realistic prism will recover (by our definition of success) the redshift of ∼70% of measured objects (subject to multiobject spectrograph selection) at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K_{\mathrm{AB}\,}&lt; 32$ \end{document} , compared to less than 45% of the objects with serial filter observations. The advantage of the prism is larger in the regime of faint ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K_{\mathrm{AB}\,}&gt; 30$ \end{document} ) objects at high redshift ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $z&gt; 4$ \end{document} ), where the prism recovers 80% of redshifts, while the filters recover barely 35% to similar accuracy. The primary discovery space ofNGSTwill be at the faintest magnitudes and the highest redshifts. Many important objects will be too faint for follow‐up at higher spectral resolution, so prism observations are the optimal technique to study them. Prism observations also reduce the contamination of high‐redshift samples by lower redshift interlopers.</abstract><pub>The University of Chicago Press</pub><doi>10.1086/316619</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2000-09, Vol.112 (775), p.1188-1199
issn 0004-6280
1538-3873
language eng
recordid cdi_jstor_primary_10_1086_316619
source IOP Publishing Journals; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects Astronomical objects
Background noise
Galaxies
Imaging
Noise spectra
Optical filters
Pixels
Red shift
Spectroscopy
Wavelengths
title Redshift Estimation from Low‐Resolution Prism Spectral Energy Distributions with aNext Generation Space TelescopeMultiobject Spectrograph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redshift%20Estimation%20from%20Low%E2%80%90Resolution%20Prism%20Spectral%20Energy%20Distributions%20with%20aNext%20Generation%20Space%20TelescopeMultiobject%20Spectrograph&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Teplitz,%20Harry%C2%A0I.&rft.date=2000-09&rft.volume=112&rft.issue=775&rft.spage=1188&rft.epage=1199&rft.pages=1188-1199&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1086/316619&rft_dat=%3Cjstor%3E10.1086/316619%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.1086/316619&rfr_iscdi=true