Against Cleaning

Practitioners, critics, and popularizers of new methods of data-driven research treat the concept of “data cleaning” as integral to such work without remarking on the oddly domestic image the term makes—as though a corn straw broom were to be incorporated, Rube Goldberg-like, into the design of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KATIE RAWSON, TREVOR MUÑOZ
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 279
container_title
container_volume
creator KATIE RAWSON
TREVOR MUÑOZ
description Practitioners, critics, and popularizers of new methods of data-driven research treat the concept of “data cleaning” as integral to such work without remarking on the oddly domestic image the term makes—as though a corn straw broom were to be incorporated, Rube Goldberg-like, into the design of the Large Hadron Collider. In reality, data cleaning is a consequential step in the research process that we often make opaque by the way we talk about it. The phrase “data cleaning” is a stand-in for longer and more precise descriptions of what people are doing in the initial phases of data-intensive research.
format Book Chapter
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_books_j_ctvg251hk_26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.5749/j.ctvg251hk.26</jstor_id><sourcerecordid>10.5749/j.ctvg251hk.26</sourcerecordid><originalsourceid>FETCH-jstor_books_j_ctvg251hk_263</originalsourceid><addsrcrecordid>eNpjZOAyNDE1sjQzNDMzYgZyTA3NLQ3MLI0tOBh4i4uzDAwMjIzMzIwtDTkZBBzTEzPziksUnHNSE_My89J5GFjTEnOKU3mhNDeDoptriLOHblZxSX5RfFJ-fnZxfFZ8cklZupGpYUZ2vJGZMTFqAJ2EKVY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Against Cleaning</title><source>Project MUSE Open Access Books</source><source>DOAB: Directory of Open Access Books</source><source>JSTOR eBooks: Open Access</source><creator>KATIE RAWSON ; TREVOR MUÑOZ</creator><contributor>Lauren F. Klein ; Matthew K. Gold</contributor><creatorcontrib>KATIE RAWSON ; TREVOR MUÑOZ ; Lauren F. Klein ; Matthew K. Gold</creatorcontrib><description>Practitioners, critics, and popularizers of new methods of data-driven research treat the concept of “data cleaning” as integral to such work without remarking on the oddly domestic image the term makes—as though a corn straw broom were to be incorporated, Rube Goldberg-like, into the design of the Large Hadron Collider. In reality, data cleaning is a consequential step in the research process that we often make opaque by the way we talk about it. The phrase “data cleaning” is a stand-in for longer and more precise descriptions of what people are doing in the initial phases of data-intensive research.</description><identifier>ISBN: 1517906938</identifier><identifier>ISBN: 9781517906931</identifier><identifier>EISBN: 1452961662</identifier><identifier>EISBN: 9781452961668</identifier><language>eng</language><publisher>University of Minnesota Press</publisher><ispartof>Debates in the Digital Humanities 2019, 2019, p.279</ispartof><rights>2019 Regents of the University of Minnesota</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>775,776,780,789,24340</link.rule.ids></links><search><contributor>Lauren F. Klein</contributor><contributor>Matthew K. Gold</contributor><creatorcontrib>KATIE RAWSON</creatorcontrib><creatorcontrib>TREVOR MUÑOZ</creatorcontrib><title>Against Cleaning</title><title>Debates in the Digital Humanities 2019</title><description>Practitioners, critics, and popularizers of new methods of data-driven research treat the concept of “data cleaning” as integral to such work without remarking on the oddly domestic image the term makes—as though a corn straw broom were to be incorporated, Rube Goldberg-like, into the design of the Large Hadron Collider. In reality, data cleaning is a consequential step in the research process that we often make opaque by the way we talk about it. The phrase “data cleaning” is a stand-in for longer and more precise descriptions of what people are doing in the initial phases of data-intensive research.</description><isbn>1517906938</isbn><isbn>9781517906931</isbn><isbn>1452961662</isbn><isbn>9781452961668</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2019</creationdate><recordtype>book_chapter</recordtype><sourceid>BAHZO</sourceid><recordid>eNpjZOAyNDE1sjQzNDMzYgZyTA3NLQ3MLI0tOBh4i4uzDAwMjIzMzIwtDTkZBBzTEzPziksUnHNSE_My89J5GFjTEnOKU3mhNDeDoptriLOHblZxSX5RfFJ-fnZxfFZ8cklZupGpYUZ2vJGZMTFqAJ2EKVY</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>KATIE RAWSON</creator><creator>TREVOR MUÑOZ</creator><general>University of Minnesota Press</general><scope>BAHZO</scope></search><sort><creationdate>20190430</creationdate><title>Against Cleaning</title><author>KATIE RAWSON ; TREVOR MUÑOZ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_books_j_ctvg251hk_263</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>KATIE RAWSON</creatorcontrib><creatorcontrib>TREVOR MUÑOZ</creatorcontrib><collection>JSTOR eBooks: Open Access</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KATIE RAWSON</au><au>TREVOR MUÑOZ</au><au>Lauren F. Klein</au><au>Matthew K. Gold</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Against Cleaning</atitle><btitle>Debates in the Digital Humanities 2019</btitle><date>2019-04-30</date><risdate>2019</risdate><spage>279</spage><pages>279-</pages><isbn>1517906938</isbn><isbn>9781517906931</isbn><eisbn>1452961662</eisbn><eisbn>9781452961668</eisbn><abstract>Practitioners, critics, and popularizers of new methods of data-driven research treat the concept of “data cleaning” as integral to such work without remarking on the oddly domestic image the term makes—as though a corn straw broom were to be incorporated, Rube Goldberg-like, into the design of the Large Hadron Collider. In reality, data cleaning is a consequential step in the research process that we often make opaque by the way we talk about it. The phrase “data cleaning” is a stand-in for longer and more precise descriptions of what people are doing in the initial phases of data-intensive research.</abstract><pub>University of Minnesota Press</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 1517906938
ispartof Debates in the Digital Humanities 2019, 2019, p.279
issn
language eng
recordid cdi_jstor_books_j_ctvg251hk_26
source Project MUSE Open Access Books; DOAB: Directory of Open Access Books; JSTOR eBooks: Open Access
title Against Cleaning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Against%20Cleaning&rft.btitle=Debates%20in%20the%20Digital%20Humanities%202019&rft.au=KATIE%20RAWSON&rft.date=2019-04-30&rft.spage=279&rft.pages=279-&rft.isbn=1517906938&rft.isbn_list=9781517906931&rft_id=info:doi/&rft_dat=%3Cjstor%3E10.5749/j.ctvg251hk.26%3C/jstor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1452961662&rft.eisbn_list=9781452961668&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.5749/j.ctvg251hk.26&rfr_iscdi=true