Cut Metamorphoses
Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx ∗prohibited by the cut to an area just beyond the cut’s control. This may be one ex...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | |
container_start_page | 241 |
container_title | |
container_volume | |
creator | Cook, William J Applegate, David L Bixby, Robert E Chvátal, Vasek |
description | Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx
∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method.
One way to deal with the shifting LP solution is to respond to each slight adjustment ofx
∗ |
doi_str_mv | 10.1515/9781400841103.241 |
format | Book Chapter |
fullrecord | <record><control><sourceid>jstor_walte</sourceid><recordid>TN_cdi_jstor_books_j_ctt7s8xg_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>j.ctt7s8xg.13</jstor_id><sourcerecordid>j.ctt7s8xg.13</sourcerecordid><originalsourceid>FETCH-LOGICAL-j721-9156e6a17278b44907853e7dd6f50ce59f88f96e99170fd7443c8edc2d6566443</originalsourceid><addsrcrecordid>eNpVj09LAzEQxSMiqHUPHr31C2ydyf8cZVErVLz0HrabSWWtRDYp6rc3UhWcy5sZ3nvwY-wKYYEK1bUzFiWAlYggFlziETv_e8Axa6oBtEPkzgl7ypqcR6ijpOIAZ-yy25f5I5X-NU1vzylTvmAnsd9lan50xtZ3t-tu2a6e7h-6m1U7Go6tQ6VJ92i4sRspHRirBJkQdFQwkHLR2ug0OYcGYjBSisFSGHjQSut6zZg-1L73u0JToO20_6yL36T0kj2C_-bz__h85avB-SE45pJ-7aMfSjHZfmw9CvEFMSRK5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Cut Metamorphoses</title><source>De Gruyter eBooks</source><creator>Cook, William J ; Applegate, David L ; Bixby, Robert E ; Chvátal, Vasek</creator><creatorcontrib>Cook, William J ; Applegate, David L ; Bixby, Robert E ; Chvátal, Vasek</creatorcontrib><description>Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx
∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method.
One way to deal with the shifting LP solution is to respond to each slight adjustment ofx
∗</description><identifier>ISBN: 9780691129938</identifier><identifier>ISBN: 0691129932</identifier><identifier>EISBN: 1400841100</identifier><identifier>EISBN: 9781400841103</identifier><identifier>DOI: 10.1515/9781400841103.241</identifier><language>eng</language><publisher>Princeton: Princeton University Press</publisher><subject>Atomic physics ; Atoms ; Biological sciences ; Biology ; Criminal law ; Criminal offenses ; Dental physiology ; Discrete mathematics ; Euclidean geometry ; Federal criminal offenses ; Geometry ; Graph theory ; Hypergraphs ; Law ; Mathematics ; Microphysics ; Physical sciences ; Physics ; Physiology ; Plane geometry ; Pure mathematics ; System physiology ; Terrorism ; Tooth eruption ; Vertices</subject><ispartof>The Traveling Salesman Problem, 2011, p.241-270</ispartof><rights>2006 Princeton University Press</rights><rights>2014 Princeton University Press, Princeton</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/9781400841103.241/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/9781400841103.241/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>776,777,781,790,24762,27906,67362,69146</link.rule.ids></links><search><creatorcontrib>Cook, William J</creatorcontrib><creatorcontrib>Applegate, David L</creatorcontrib><creatorcontrib>Bixby, Robert E</creatorcontrib><creatorcontrib>Chvátal, Vasek</creatorcontrib><title>Cut Metamorphoses</title><title>The Traveling Salesman Problem</title><description>Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx
∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method.
One way to deal with the shifting LP solution is to respond to each slight adjustment ofx
∗</description><subject>Atomic physics</subject><subject>Atoms</subject><subject>Biological sciences</subject><subject>Biology</subject><subject>Criminal law</subject><subject>Criminal offenses</subject><subject>Dental physiology</subject><subject>Discrete mathematics</subject><subject>Euclidean geometry</subject><subject>Federal criminal offenses</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Hypergraphs</subject><subject>Law</subject><subject>Mathematics</subject><subject>Microphysics</subject><subject>Physical sciences</subject><subject>Physics</subject><subject>Physiology</subject><subject>Plane geometry</subject><subject>Pure mathematics</subject><subject>System physiology</subject><subject>Terrorism</subject><subject>Tooth eruption</subject><subject>Vertices</subject><isbn>9780691129938</isbn><isbn>0691129932</isbn><isbn>1400841100</isbn><isbn>9781400841103</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2011</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVj09LAzEQxSMiqHUPHr31C2ydyf8cZVErVLz0HrabSWWtRDYp6rc3UhWcy5sZ3nvwY-wKYYEK1bUzFiWAlYggFlziETv_e8Axa6oBtEPkzgl7ypqcR6ijpOIAZ-yy25f5I5X-NU1vzylTvmAnsd9lan50xtZ3t-tu2a6e7h-6m1U7Go6tQ6VJ92i4sRspHRirBJkQdFQwkHLR2ug0OYcGYjBSisFSGHjQSut6zZg-1L73u0JToO20_6yL36T0kj2C_-bz__h85avB-SE45pJ-7aMfSjHZfmw9CvEFMSRK5g</recordid><startdate>20110919</startdate><enddate>20110919</enddate><creator>Cook, William J</creator><creator>Applegate, David L</creator><creator>Bixby, Robert E</creator><creator>Chvátal, Vasek</creator><general>Princeton University Press</general><scope/></search><sort><creationdate>20110919</creationdate><title>Cut Metamorphoses</title><author>Cook, William J ; Applegate, David L ; Bixby, Robert E ; Chvátal, Vasek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j721-9156e6a17278b44907853e7dd6f50ce59f88f96e99170fd7443c8edc2d6566443</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic physics</topic><topic>Atoms</topic><topic>Biological sciences</topic><topic>Biology</topic><topic>Criminal law</topic><topic>Criminal offenses</topic><topic>Dental physiology</topic><topic>Discrete mathematics</topic><topic>Euclidean geometry</topic><topic>Federal criminal offenses</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Hypergraphs</topic><topic>Law</topic><topic>Mathematics</topic><topic>Microphysics</topic><topic>Physical sciences</topic><topic>Physics</topic><topic>Physiology</topic><topic>Plane geometry</topic><topic>Pure mathematics</topic><topic>System physiology</topic><topic>Terrorism</topic><topic>Tooth eruption</topic><topic>Vertices</topic><toplevel>online_resources</toplevel><creatorcontrib>Cook, William J</creatorcontrib><creatorcontrib>Applegate, David L</creatorcontrib><creatorcontrib>Bixby, Robert E</creatorcontrib><creatorcontrib>Chvátal, Vasek</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, William J</au><au>Applegate, David L</au><au>Bixby, Robert E</au><au>Chvátal, Vasek</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Cut Metamorphoses</atitle><btitle>The Traveling Salesman Problem</btitle><date>2011-09-19</date><risdate>2011</risdate><spage>241</spage><epage>270</epage><pages>241-270</pages><isbn>9780691129938</isbn><isbn>0691129932</isbn><eisbn>1400841100</eisbn><eisbn>9781400841103</eisbn><abstract>Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx
∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method.
One way to deal with the shifting LP solution is to respond to each slight adjustment ofx
∗</abstract><cop>Princeton</cop><pub>Princeton University Press</pub><doi>10.1515/9781400841103.241</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9780691129938 |
ispartof | The Traveling Salesman Problem, 2011, p.241-270 |
issn | |
language | eng |
recordid | cdi_jstor_books_j_ctt7s8xg_13 |
source | De Gruyter eBooks |
subjects | Atomic physics Atoms Biological sciences Biology Criminal law Criminal offenses Dental physiology Discrete mathematics Euclidean geometry Federal criminal offenses Geometry Graph theory Hypergraphs Law Mathematics Microphysics Physical sciences Physics Physiology Plane geometry Pure mathematics System physiology Terrorism Tooth eruption Vertices |
title | Cut Metamorphoses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_walte&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Cut%20Metamorphoses&rft.btitle=The%20Traveling%20Salesman%20Problem&rft.au=Cook,%20William%20J&rft.date=2011-09-19&rft.spage=241&rft.epage=270&rft.pages=241-270&rft.isbn=9780691129938&rft.isbn_list=0691129932&rft_id=info:doi/10.1515/9781400841103.241&rft_dat=%3Cjstor_walte%3Ej.ctt7s8xg.13%3C/jstor_walte%3E%3Curl%3E%3C/url%3E&rft.eisbn=1400841100&rft.eisbn_list=9781400841103&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=j.ctt7s8xg.13&rfr_iscdi=true |