Cut Metamorphoses

Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx ∗prohibited by the cut to an area just beyond the cut’s control. This may be one ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cook, William J, Applegate, David L, Bixby, Robert E, Chvátal, Vasek
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue
container_start_page 241
container_title
container_volume
creator Cook, William J
Applegate, David L
Bixby, Robert E
Chvátal, Vasek
description Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx ∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method. One way to deal with the shifting LP solution is to respond to each slight adjustment ofx ∗
doi_str_mv 10.1515/9781400841103.241
format Book Chapter
fullrecord <record><control><sourceid>jstor_walte</sourceid><recordid>TN_cdi_jstor_books_j_ctt7s8xg_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>j.ctt7s8xg.13</jstor_id><sourcerecordid>j.ctt7s8xg.13</sourcerecordid><originalsourceid>FETCH-LOGICAL-j721-9156e6a17278b44907853e7dd6f50ce59f88f96e99170fd7443c8edc2d6566443</originalsourceid><addsrcrecordid>eNpVj09LAzEQxSMiqHUPHr31C2ydyf8cZVErVLz0HrabSWWtRDYp6rc3UhWcy5sZ3nvwY-wKYYEK1bUzFiWAlYggFlziETv_e8Axa6oBtEPkzgl7ypqcR6ijpOIAZ-yy25f5I5X-NU1vzylTvmAnsd9lan50xtZ3t-tu2a6e7h-6m1U7Go6tQ6VJ92i4sRspHRirBJkQdFQwkHLR2ug0OYcGYjBSisFSGHjQSut6zZg-1L73u0JToO20_6yL36T0kj2C_-bz__h85avB-SE45pJ-7aMfSjHZfmw9CvEFMSRK5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Cut Metamorphoses</title><source>De Gruyter eBooks</source><creator>Cook, William J ; Applegate, David L ; Bixby, Robert E ; Chvátal, Vasek</creator><creatorcontrib>Cook, William J ; Applegate, David L ; Bixby, Robert E ; Chvátal, Vasek</creatorcontrib><description>Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx ∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method. One way to deal with the shifting LP solution is to respond to each slight adjustment ofx ∗</description><identifier>ISBN: 9780691129938</identifier><identifier>ISBN: 0691129932</identifier><identifier>EISBN: 1400841100</identifier><identifier>EISBN: 9781400841103</identifier><identifier>DOI: 10.1515/9781400841103.241</identifier><language>eng</language><publisher>Princeton: Princeton University Press</publisher><subject>Atomic physics ; Atoms ; Biological sciences ; Biology ; Criminal law ; Criminal offenses ; Dental physiology ; Discrete mathematics ; Euclidean geometry ; Federal criminal offenses ; Geometry ; Graph theory ; Hypergraphs ; Law ; Mathematics ; Microphysics ; Physical sciences ; Physics ; Physiology ; Plane geometry ; Pure mathematics ; System physiology ; Terrorism ; Tooth eruption ; Vertices</subject><ispartof>The Traveling Salesman Problem, 2011, p.241-270</ispartof><rights>2006 Princeton University Press</rights><rights>2014 Princeton University Press, Princeton</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/9781400841103.241/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/9781400841103.241/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>776,777,781,790,24762,27906,67362,69146</link.rule.ids></links><search><creatorcontrib>Cook, William J</creatorcontrib><creatorcontrib>Applegate, David L</creatorcontrib><creatorcontrib>Bixby, Robert E</creatorcontrib><creatorcontrib>Chvátal, Vasek</creatorcontrib><title>Cut Metamorphoses</title><title>The Traveling Salesman Problem</title><description>Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx ∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method. One way to deal with the shifting LP solution is to respond to each slight adjustment ofx ∗</description><subject>Atomic physics</subject><subject>Atoms</subject><subject>Biological sciences</subject><subject>Biology</subject><subject>Criminal law</subject><subject>Criminal offenses</subject><subject>Dental physiology</subject><subject>Discrete mathematics</subject><subject>Euclidean geometry</subject><subject>Federal criminal offenses</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Hypergraphs</subject><subject>Law</subject><subject>Mathematics</subject><subject>Microphysics</subject><subject>Physical sciences</subject><subject>Physics</subject><subject>Physiology</subject><subject>Plane geometry</subject><subject>Pure mathematics</subject><subject>System physiology</subject><subject>Terrorism</subject><subject>Tooth eruption</subject><subject>Vertices</subject><isbn>9780691129938</isbn><isbn>0691129932</isbn><isbn>1400841100</isbn><isbn>9781400841103</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2011</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVj09LAzEQxSMiqHUPHr31C2ydyf8cZVErVLz0HrabSWWtRDYp6rc3UhWcy5sZ3nvwY-wKYYEK1bUzFiWAlYggFlziETv_e8Axa6oBtEPkzgl7ypqcR6ijpOIAZ-yy25f5I5X-NU1vzylTvmAnsd9lan50xtZ3t-tu2a6e7h-6m1U7Go6tQ6VJ92i4sRspHRirBJkQdFQwkHLR2ug0OYcGYjBSisFSGHjQSut6zZg-1L73u0JToO20_6yL36T0kj2C_-bz__h85avB-SE45pJ-7aMfSjHZfmw9CvEFMSRK5g</recordid><startdate>20110919</startdate><enddate>20110919</enddate><creator>Cook, William J</creator><creator>Applegate, David L</creator><creator>Bixby, Robert E</creator><creator>Chvátal, Vasek</creator><general>Princeton University Press</general><scope/></search><sort><creationdate>20110919</creationdate><title>Cut Metamorphoses</title><author>Cook, William J ; Applegate, David L ; Bixby, Robert E ; Chvátal, Vasek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j721-9156e6a17278b44907853e7dd6f50ce59f88f96e99170fd7443c8edc2d6566443</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic physics</topic><topic>Atoms</topic><topic>Biological sciences</topic><topic>Biology</topic><topic>Criminal law</topic><topic>Criminal offenses</topic><topic>Dental physiology</topic><topic>Discrete mathematics</topic><topic>Euclidean geometry</topic><topic>Federal criminal offenses</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Hypergraphs</topic><topic>Law</topic><topic>Mathematics</topic><topic>Microphysics</topic><topic>Physical sciences</topic><topic>Physics</topic><topic>Physiology</topic><topic>Plane geometry</topic><topic>Pure mathematics</topic><topic>System physiology</topic><topic>Terrorism</topic><topic>Tooth eruption</topic><topic>Vertices</topic><toplevel>online_resources</toplevel><creatorcontrib>Cook, William J</creatorcontrib><creatorcontrib>Applegate, David L</creatorcontrib><creatorcontrib>Bixby, Robert E</creatorcontrib><creatorcontrib>Chvátal, Vasek</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, William J</au><au>Applegate, David L</au><au>Bixby, Robert E</au><au>Chvátal, Vasek</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Cut Metamorphoses</atitle><btitle>The Traveling Salesman Problem</btitle><date>2011-09-19</date><risdate>2011</risdate><spage>241</spage><epage>270</epage><pages>241-270</pages><isbn>9780691129938</isbn><isbn>0691129932</isbn><eisbn>1400841100</eisbn><eisbn>9781400841103</eisbn><abstract>Watching a run of the cutting-plane method is like viewing a tug-of-war between the LP solver and the cut finder. When a cutting plane is added to the LP relaxation, the solver often reacts by shifting the defect inx ∗prohibited by the cut to an area just beyond the cut’s control. This may be one explanation for the footnote in the Dantzig et al. [150] technical report remarking that E. W. Paxson called their procedure the “finger in the dike” method. One way to deal with the shifting LP solution is to respond to each slight adjustment ofx ∗</abstract><cop>Princeton</cop><pub>Princeton University Press</pub><doi>10.1515/9781400841103.241</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9780691129938
ispartof The Traveling Salesman Problem, 2011, p.241-270
issn
language eng
recordid cdi_jstor_books_j_ctt7s8xg_13
source De Gruyter eBooks
subjects Atomic physics
Atoms
Biological sciences
Biology
Criminal law
Criminal offenses
Dental physiology
Discrete mathematics
Euclidean geometry
Federal criminal offenses
Geometry
Graph theory
Hypergraphs
Law
Mathematics
Microphysics
Physical sciences
Physics
Physiology
Plane geometry
Pure mathematics
System physiology
Terrorism
Tooth eruption
Vertices
title Cut Metamorphoses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_walte&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Cut%20Metamorphoses&rft.btitle=The%20Traveling%20Salesman%20Problem&rft.au=Cook,%20William%20J&rft.date=2011-09-19&rft.spage=241&rft.epage=270&rft.pages=241-270&rft.isbn=9780691129938&rft.isbn_list=0691129932&rft_id=info:doi/10.1515/9781400841103.241&rft_dat=%3Cjstor_walte%3Ej.ctt7s8xg.13%3C/jstor_walte%3E%3Curl%3E%3C/url%3E&rft.eisbn=1400841100&rft.eisbn_list=9781400841103&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=j.ctt7s8xg.13&rfr_iscdi=true