Odour intensity learning in fruit flies

Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2009-10, Vol.276 (1672), p.3413-3420
Hauptverfasser: Yarali, Ayse, Ehser, Sabrina, Hapil, Fatma Zehra, Huang, Ju, Gerber, Bertram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3420
container_issue 1672
container_start_page 3413
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 276
creator Yarali, Ayse
Ehser, Sabrina
Hapil, Fatma Zehra
Huang, Ju
Gerber, Bertram
description Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.
doi_str_mv 10.1098/rspb.2009.0705
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_ZHBXPLZF_C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30244135</jstor_id><sourcerecordid>30244135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</originalsourceid><addsrcrecordid>eNqFkttv0zAUxiMEYt3glTdQn-ApxZfEjl_QWLUxpEqbuAnt5ciJndZdGgc7GYS_HqepChViPFn2-c7vXD5H0TOMZhiJ7LXzTT4jCIkZ4ih9EE1wwnFMRJo8jCZIMBJnSUqOomPv1yjI0ix9HB3hcDKRJJPo1ZWynZuautW1N20_rbR0tamX4Wlaus6007Iy2j-JHpWy8vrp7jyJPl-cf5pfxourd-_nbxdxwQltY6YU4ppIQnWptCCICZSzXOicS0VUiiQnBWG8yDWVuZIq4TkuVEFwpjCVip5Eb0Zu0-UbrQpdt05W0Dizka4HKw0cRmqzgqW9A5JhjjMcAC93AGe_ddq3sDG-0FUla207D4yzsLhE_FdIkOAkSwfibBQWznrvdLnvBiMYTIDBBBhMgMGEkPDizxl-y3dbDwI6CpztwzJtYXTbwzoYUYfrv7G392V9-Hh9dkc4M5hxAiijGKUowxh-mmaH4gyM952GreQQ_3e152O1tW-t289AEUkSTId4PMaNb_WPfVy627BiylP4kiVwc3n29XpxcwHzoD8d9SuzXH03TsPBGNvqhR2-YbttdNsiDaWg7KrwAVQZEORehO0b5_PDbPoLXfz6pQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20972851</pqid></control><display><type>article</type><title>Odour intensity learning in fruit flies</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Yarali, Ayse ; Ehser, Sabrina ; Hapil, Fatma Zehra ; Huang, Ju ; Gerber, Bertram</creator><creatorcontrib>Yarali, Ayse ; Ehser, Sabrina ; Hapil, Fatma Zehra ; Huang, Ju ; Gerber, Bertram</creatorcontrib><description>Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>EISSN: 1471-2945</identifier><identifier>DOI: 10.1098/rspb.2009.0705</identifier><identifier>PMID: 19586944</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Associative Learning ; Behavior, Animal - physiology ; Benzaldehyde ; Conditioning (Psychology) - physiology ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Fruit flies ; Fruit Fly ; Learning ; Learning - physiology ; Memory ; Memory trace ; Neurons ; Odorants ; Odors ; Odour Intensity ; Olfaction ; Olfactory perception ; Recognition ; Solvents ; Training</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2009-10, Vol.276 (1672), p.3413-3420</ispartof><rights>Copyright 2009 The Royal Society</rights><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</citedby><cites>FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30244135$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30244135$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19586944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yarali, Ayse</creatorcontrib><creatorcontrib>Ehser, Sabrina</creatorcontrib><creatorcontrib>Hapil, Fatma Zehra</creatorcontrib><creatorcontrib>Huang, Ju</creatorcontrib><creatorcontrib>Gerber, Bertram</creatorcontrib><title>Odour intensity learning in fruit flies</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.</description><subject>Animals</subject><subject>Associative Learning</subject><subject>Behavior, Animal - physiology</subject><subject>Benzaldehyde</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Fruit flies</subject><subject>Fruit Fly</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Memory</subject><subject>Memory trace</subject><subject>Neurons</subject><subject>Odorants</subject><subject>Odors</subject><subject>Odour Intensity</subject><subject>Olfaction</subject><subject>Olfactory perception</subject><subject>Recognition</subject><subject>Solvents</subject><subject>Training</subject><issn>0962-8452</issn><issn>1471-2954</issn><issn>1471-2945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkttv0zAUxiMEYt3glTdQn-ApxZfEjl_QWLUxpEqbuAnt5ciJndZdGgc7GYS_HqepChViPFn2-c7vXD5H0TOMZhiJ7LXzTT4jCIkZ4ih9EE1wwnFMRJo8jCZIMBJnSUqOomPv1yjI0ix9HB3hcDKRJJPo1ZWynZuautW1N20_rbR0tamX4Wlaus6007Iy2j-JHpWy8vrp7jyJPl-cf5pfxourd-_nbxdxwQltY6YU4ppIQnWptCCICZSzXOicS0VUiiQnBWG8yDWVuZIq4TkuVEFwpjCVip5Eb0Zu0-UbrQpdt05W0Dizka4HKw0cRmqzgqW9A5JhjjMcAC93AGe_ddq3sDG-0FUla207D4yzsLhE_FdIkOAkSwfibBQWznrvdLnvBiMYTIDBBBhMgMGEkPDizxl-y3dbDwI6CpztwzJtYXTbwzoYUYfrv7G392V9-Hh9dkc4M5hxAiijGKUowxh-mmaH4gyM952GreQQ_3e152O1tW-t289AEUkSTId4PMaNb_WPfVy627BiylP4kiVwc3n29XpxcwHzoD8d9SuzXH03TsPBGNvqhR2-YbttdNsiDaWg7KrwAVQZEORehO0b5_PDbPoLXfz6pQ</recordid><startdate>20091007</startdate><enddate>20091007</enddate><creator>Yarali, Ayse</creator><creator>Ehser, Sabrina</creator><creator>Hapil, Fatma Zehra</creator><creator>Huang, Ju</creator><creator>Gerber, Bertram</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091007</creationdate><title>Odour intensity learning in fruit flies</title><author>Yarali, Ayse ; Ehser, Sabrina ; Hapil, Fatma Zehra ; Huang, Ju ; Gerber, Bertram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Associative Learning</topic><topic>Behavior, Animal - physiology</topic><topic>Benzaldehyde</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Fruit flies</topic><topic>Fruit Fly</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Memory</topic><topic>Memory trace</topic><topic>Neurons</topic><topic>Odorants</topic><topic>Odors</topic><topic>Odour Intensity</topic><topic>Olfaction</topic><topic>Olfactory perception</topic><topic>Recognition</topic><topic>Solvents</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yarali, Ayse</creatorcontrib><creatorcontrib>Ehser, Sabrina</creatorcontrib><creatorcontrib>Hapil, Fatma Zehra</creatorcontrib><creatorcontrib>Huang, Ju</creatorcontrib><creatorcontrib>Gerber, Bertram</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yarali, Ayse</au><au>Ehser, Sabrina</au><au>Hapil, Fatma Zehra</au><au>Huang, Ju</au><au>Gerber, Bertram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Odour intensity learning in fruit flies</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2009-10-07</date><risdate>2009</risdate><volume>276</volume><issue>1672</issue><spage>3413</spage><epage>3420</epage><pages>3413-3420</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><eissn>1471-2945</eissn><abstract>Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>19586944</pmid><doi>10.1098/rspb.2009.0705</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2009-10, Vol.276 (1672), p.3413-3420
issn 0962-8452
1471-2954
1471-2945
language eng
recordid cdi_istex_primary_ark_67375_V84_ZHBXPLZF_C
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Animals
Associative Learning
Behavior, Animal - physiology
Benzaldehyde
Conditioning (Psychology) - physiology
Drosophila
Drosophila melanogaster
Drosophila melanogaster - physiology
Fruit flies
Fruit Fly
Learning
Learning - physiology
Memory
Memory trace
Neurons
Odorants
Odors
Odour Intensity
Olfaction
Olfactory perception
Recognition
Solvents
Training
title Odour intensity learning in fruit flies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Odour%20intensity%20learning%20in%20fruit%20flies&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Yarali,%20Ayse&rft.date=2009-10-07&rft.volume=276&rft.issue=1672&rft.spage=3413&rft.epage=3420&rft.pages=3413-3420&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2009.0705&rft_dat=%3Cjstor_istex%3E30244135%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20972851&rft_id=info:pmid/19586944&rft_jstor_id=30244135&rfr_iscdi=true