Odour intensity learning in fruit flies
Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fru...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2009-10, Vol.276 (1672), p.3413-3420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3420 |
---|---|
container_issue | 1672 |
container_start_page | 3413 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 276 |
creator | Yarali, Ayse Ehser, Sabrina Hapil, Fatma Zehra Huang, Ju Gerber, Bertram |
description | Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level. |
doi_str_mv | 10.1098/rspb.2009.0705 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_ZHBXPLZF_C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30244135</jstor_id><sourcerecordid>30244135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</originalsourceid><addsrcrecordid>eNqFkttv0zAUxiMEYt3glTdQn-ApxZfEjl_QWLUxpEqbuAnt5ciJndZdGgc7GYS_HqepChViPFn2-c7vXD5H0TOMZhiJ7LXzTT4jCIkZ4ih9EE1wwnFMRJo8jCZIMBJnSUqOomPv1yjI0ix9HB3hcDKRJJPo1ZWynZuautW1N20_rbR0tamX4Wlaus6007Iy2j-JHpWy8vrp7jyJPl-cf5pfxourd-_nbxdxwQltY6YU4ppIQnWptCCICZSzXOicS0VUiiQnBWG8yDWVuZIq4TkuVEFwpjCVip5Eb0Zu0-UbrQpdt05W0Dizka4HKw0cRmqzgqW9A5JhjjMcAC93AGe_ddq3sDG-0FUla207D4yzsLhE_FdIkOAkSwfibBQWznrvdLnvBiMYTIDBBBhMgMGEkPDizxl-y3dbDwI6CpztwzJtYXTbwzoYUYfrv7G392V9-Hh9dkc4M5hxAiijGKUowxh-mmaH4gyM952GreQQ_3e152O1tW-t289AEUkSTId4PMaNb_WPfVy627BiylP4kiVwc3n29XpxcwHzoD8d9SuzXH03TsPBGNvqhR2-YbttdNsiDaWg7KrwAVQZEORehO0b5_PDbPoLXfz6pQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20972851</pqid></control><display><type>article</type><title>Odour intensity learning in fruit flies</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Yarali, Ayse ; Ehser, Sabrina ; Hapil, Fatma Zehra ; Huang, Ju ; Gerber, Bertram</creator><creatorcontrib>Yarali, Ayse ; Ehser, Sabrina ; Hapil, Fatma Zehra ; Huang, Ju ; Gerber, Bertram</creatorcontrib><description>Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>EISSN: 1471-2945</identifier><identifier>DOI: 10.1098/rspb.2009.0705</identifier><identifier>PMID: 19586944</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Associative Learning ; Behavior, Animal - physiology ; Benzaldehyde ; Conditioning (Psychology) - physiology ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Fruit flies ; Fruit Fly ; Learning ; Learning - physiology ; Memory ; Memory trace ; Neurons ; Odorants ; Odors ; Odour Intensity ; Olfaction ; Olfactory perception ; Recognition ; Solvents ; Training</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2009-10, Vol.276 (1672), p.3413-3420</ispartof><rights>Copyright 2009 The Royal Society</rights><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</citedby><cites>FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30244135$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30244135$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19586944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yarali, Ayse</creatorcontrib><creatorcontrib>Ehser, Sabrina</creatorcontrib><creatorcontrib>Hapil, Fatma Zehra</creatorcontrib><creatorcontrib>Huang, Ju</creatorcontrib><creatorcontrib>Gerber, Bertram</creatorcontrib><title>Odour intensity learning in fruit flies</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.</description><subject>Animals</subject><subject>Associative Learning</subject><subject>Behavior, Animal - physiology</subject><subject>Benzaldehyde</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Fruit flies</subject><subject>Fruit Fly</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Memory</subject><subject>Memory trace</subject><subject>Neurons</subject><subject>Odorants</subject><subject>Odors</subject><subject>Odour Intensity</subject><subject>Olfaction</subject><subject>Olfactory perception</subject><subject>Recognition</subject><subject>Solvents</subject><subject>Training</subject><issn>0962-8452</issn><issn>1471-2954</issn><issn>1471-2945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkttv0zAUxiMEYt3glTdQn-ApxZfEjl_QWLUxpEqbuAnt5ciJndZdGgc7GYS_HqepChViPFn2-c7vXD5H0TOMZhiJ7LXzTT4jCIkZ4ih9EE1wwnFMRJo8jCZIMBJnSUqOomPv1yjI0ix9HB3hcDKRJJPo1ZWynZuautW1N20_rbR0tamX4Wlaus6007Iy2j-JHpWy8vrp7jyJPl-cf5pfxourd-_nbxdxwQltY6YU4ppIQnWptCCICZSzXOicS0VUiiQnBWG8yDWVuZIq4TkuVEFwpjCVip5Eb0Zu0-UbrQpdt05W0Dizka4HKw0cRmqzgqW9A5JhjjMcAC93AGe_ddq3sDG-0FUla207D4yzsLhE_FdIkOAkSwfibBQWznrvdLnvBiMYTIDBBBhMgMGEkPDizxl-y3dbDwI6CpztwzJtYXTbwzoYUYfrv7G392V9-Hh9dkc4M5hxAiijGKUowxh-mmaH4gyM952GreQQ_3e152O1tW-t289AEUkSTId4PMaNb_WPfVy627BiylP4kiVwc3n29XpxcwHzoD8d9SuzXH03TsPBGNvqhR2-YbttdNsiDaWg7KrwAVQZEORehO0b5_PDbPoLXfz6pQ</recordid><startdate>20091007</startdate><enddate>20091007</enddate><creator>Yarali, Ayse</creator><creator>Ehser, Sabrina</creator><creator>Hapil, Fatma Zehra</creator><creator>Huang, Ju</creator><creator>Gerber, Bertram</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091007</creationdate><title>Odour intensity learning in fruit flies</title><author>Yarali, Ayse ; Ehser, Sabrina ; Hapil, Fatma Zehra ; Huang, Ju ; Gerber, Bertram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-6dd07e2a23efde920690b6b9eb7ad2d50a72c267cbe3abdad47b1cdc218d13ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Associative Learning</topic><topic>Behavior, Animal - physiology</topic><topic>Benzaldehyde</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Fruit flies</topic><topic>Fruit Fly</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Memory</topic><topic>Memory trace</topic><topic>Neurons</topic><topic>Odorants</topic><topic>Odors</topic><topic>Odour Intensity</topic><topic>Olfaction</topic><topic>Olfactory perception</topic><topic>Recognition</topic><topic>Solvents</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yarali, Ayse</creatorcontrib><creatorcontrib>Ehser, Sabrina</creatorcontrib><creatorcontrib>Hapil, Fatma Zehra</creatorcontrib><creatorcontrib>Huang, Ju</creatorcontrib><creatorcontrib>Gerber, Bertram</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yarali, Ayse</au><au>Ehser, Sabrina</au><au>Hapil, Fatma Zehra</au><au>Huang, Ju</au><au>Gerber, Bertram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Odour intensity learning in fruit flies</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2009-10-07</date><risdate>2009</risdate><volume>276</volume><issue>1672</issue><spage>3413</spage><epage>3420</epage><pages>3413-3420</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><eissn>1471-2945</eissn><abstract>Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>19586944</pmid><doi>10.1098/rspb.2009.0705</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2009-10, Vol.276 (1672), p.3413-3420 |
issn | 0962-8452 1471-2954 1471-2945 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_ZHBXPLZF_C |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Animals Associative Learning Behavior, Animal - physiology Benzaldehyde Conditioning (Psychology) - physiology Drosophila Drosophila melanogaster Drosophila melanogaster - physiology Fruit flies Fruit Fly Learning Learning - physiology Memory Memory trace Neurons Odorants Odors Odour Intensity Olfaction Olfactory perception Recognition Solvents Training |
title | Odour intensity learning in fruit flies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Odour%20intensity%20learning%20in%20fruit%20flies&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Yarali,%20Ayse&rft.date=2009-10-07&rft.volume=276&rft.issue=1672&rft.spage=3413&rft.epage=3420&rft.pages=3413-3420&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2009.0705&rft_dat=%3Cjstor_istex%3E30244135%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20972851&rft_id=info:pmid/19586944&rft_jstor_id=30244135&rfr_iscdi=true |