Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model
Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interp...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2011-05, Vol.366 (1570), p.1621-1631 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1631 |
---|---|
container_issue | 1570 |
container_start_page | 1621 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 366 |
creator | Markowitz, Jared Krishnaswamy, Pavitra Eilenberg, Michael F. Endo, Ken Barnhart, Chris Herr, Hugh |
description | Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs. |
doi_str_mv | 10.1098/rstb.2010.0347 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_ST4LMR3P_Q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23035565</jstor_id><sourcerecordid>23035565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</originalsourceid><addsrcrecordid>eNqFkb2P1DAQxSME4paDlg6UjiqLP5O4QUInOJAW8XErChpr4kxYL9k42M4d-9_jKMcCBaKyxu83TzPzsuwxJWtKVP3ch9isGUkl4aK6k62oqGjBVEXuZiuiSlbUgpdn2YMQ9oQQJStxPztjVBJGOV1lX65GxDaHFsYI0boht0MO-ehu0Kf_6GEI0TYW-nz0LsQdBhty44boXd8n4sbGXWoYcPLuMAUz9eDzg2uxf5jd66AP-Oj2Pc-2r19tL94Um_eXby9ebgojmYyFBGiM4bQTpKkFKY1UnTSMVQSwFA0TSBlvjVB1Z7AjigNBFKpD6MAg8PPsxWI7Ts0BW4NpNOj16O0B_FE7sPpvZbA7_dVda045EaJOBs9uDbz7PmGI-mCDwb6HAd0UtCIVlYop_l-yLlmlBKlncr2QJh0teOxO81Ci5-D0HJyeg9NzcKnh6Z9bnPBfSSWAL4B3x3RNZyzGo967yQ-p_Lftk6VrH6Lzv1054VKWMunFotsQ8cdJB_9NlxWvpP5cC321FZt3n_gH_ZH_BP-0wlI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862794083</pqid></control><display><type>article</type><title>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Markowitz, Jared ; Krishnaswamy, Pavitra ; Eilenberg, Michael F. ; Endo, Ken ; Barnhart, Chris ; Herr, Hugh</creator><creatorcontrib>Markowitz, Jared ; Krishnaswamy, Pavitra ; Eilenberg, Michael F. ; Endo, Ken ; Barnhart, Chris ; Herr, Hugh</creatorcontrib><description>Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2010.0347</identifier><identifier>PMID: 21502131</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Amputees ; Ankle ; Ankle joint ; Ankle Joint - physiology ; Artificial Limbs ; Feedback, Physiological ; Flexors ; Foot - physiology ; Gait ; Humans ; Knees ; Models, Anatomic ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Muscles ; Neuromuscular Model ; Powered Prosthesis ; Prosthesis Control ; Prosthesis Design - methods ; Prosthetics ; Speed ; Speed Adaptation ; Tendons - physiology ; Torque ; Walking ; Walking - physiology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2011-05, Vol.366 (1570), p.1621-1631</ispartof><rights>Copyright © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</citedby><cites>FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23035565$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23035565$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21502131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Markowitz, Jared</creatorcontrib><creatorcontrib>Krishnaswamy, Pavitra</creatorcontrib><creatorcontrib>Eilenberg, Michael F.</creatorcontrib><creatorcontrib>Endo, Ken</creatorcontrib><creatorcontrib>Barnhart, Chris</creatorcontrib><creatorcontrib>Herr, Hugh</creatorcontrib><title>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Phil. Trans. R. Soc. B</addtitle><description>Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.</description><subject>Amputees</subject><subject>Ankle</subject><subject>Ankle joint</subject><subject>Ankle Joint - physiology</subject><subject>Artificial Limbs</subject><subject>Feedback, Physiological</subject><subject>Flexors</subject><subject>Foot - physiology</subject><subject>Gait</subject><subject>Humans</subject><subject>Knees</subject><subject>Models, Anatomic</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Neuromuscular Model</subject><subject>Powered Prosthesis</subject><subject>Prosthesis Control</subject><subject>Prosthesis Design - methods</subject><subject>Prosthetics</subject><subject>Speed</subject><subject>Speed Adaptation</subject><subject>Tendons - physiology</subject><subject>Torque</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb2P1DAQxSME4paDlg6UjiqLP5O4QUInOJAW8XErChpr4kxYL9k42M4d-9_jKMcCBaKyxu83TzPzsuwxJWtKVP3ch9isGUkl4aK6k62oqGjBVEXuZiuiSlbUgpdn2YMQ9oQQJStxPztjVBJGOV1lX65GxDaHFsYI0boht0MO-ehu0Kf_6GEI0TYW-nz0LsQdBhty44boXd8n4sbGXWoYcPLuMAUz9eDzg2uxf5jd66AP-Oj2Pc-2r19tL94Um_eXby9ebgojmYyFBGiM4bQTpKkFKY1UnTSMVQSwFA0TSBlvjVB1Z7AjigNBFKpD6MAg8PPsxWI7Ts0BW4NpNOj16O0B_FE7sPpvZbA7_dVda045EaJOBs9uDbz7PmGI-mCDwb6HAd0UtCIVlYop_l-yLlmlBKlncr2QJh0teOxO81Ci5-D0HJyeg9NzcKnh6Z9bnPBfSSWAL4B3x3RNZyzGo967yQ-p_Lftk6VrH6Lzv1054VKWMunFotsQ8cdJB_9NlxWvpP5cC321FZt3n_gH_ZH_BP-0wlI</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Markowitz, Jared</creator><creator>Krishnaswamy, Pavitra</creator><creator>Eilenberg, Michael F.</creator><creator>Endo, Ken</creator><creator>Barnhart, Chris</creator><creator>Herr, Hugh</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>7TK</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20110527</creationdate><title>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</title><author>Markowitz, Jared ; Krishnaswamy, Pavitra ; Eilenberg, Michael F. ; Endo, Ken ; Barnhart, Chris ; Herr, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amputees</topic><topic>Ankle</topic><topic>Ankle joint</topic><topic>Ankle Joint - physiology</topic><topic>Artificial Limbs</topic><topic>Feedback, Physiological</topic><topic>Flexors</topic><topic>Foot - physiology</topic><topic>Gait</topic><topic>Humans</topic><topic>Knees</topic><topic>Models, Anatomic</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Neuromuscular Model</topic><topic>Powered Prosthesis</topic><topic>Prosthesis Control</topic><topic>Prosthesis Design - methods</topic><topic>Prosthetics</topic><topic>Speed</topic><topic>Speed Adaptation</topic><topic>Tendons - physiology</topic><topic>Torque</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markowitz, Jared</creatorcontrib><creatorcontrib>Krishnaswamy, Pavitra</creatorcontrib><creatorcontrib>Eilenberg, Michael F.</creatorcontrib><creatorcontrib>Endo, Ken</creatorcontrib><creatorcontrib>Barnhart, Chris</creatorcontrib><creatorcontrib>Herr, Hugh</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markowitz, Jared</au><au>Krishnaswamy, Pavitra</au><au>Eilenberg, Michael F.</au><au>Endo, Ken</au><au>Barnhart, Chris</au><au>Herr, Hugh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Phil. Trans. R. Soc. B</addtitle><date>2011-05-27</date><risdate>2011</risdate><volume>366</volume><issue>1570</issue><spage>1621</spage><epage>1631</epage><pages>1621-1631</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>21502131</pmid><doi>10.1098/rstb.2010.0347</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2011-05, Vol.366 (1570), p.1621-1631 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_ST4LMR3P_Q |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Amputees Ankle Ankle joint Ankle Joint - physiology Artificial Limbs Feedback, Physiological Flexors Foot - physiology Gait Humans Knees Models, Anatomic Muscle, Skeletal - innervation Muscle, Skeletal - physiology Muscles Neuromuscular Model Powered Prosthesis Prosthesis Control Prosthesis Design - methods Prosthetics Speed Speed Adaptation Tendons - physiology Torque Walking Walking - physiology |
title | Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speed%20adaptation%20in%20a%20powered%20transtibial%20prosthesis%20controlled%20with%20a%20neuromuscular%20model&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Markowitz,%20Jared&rft.date=2011-05-27&rft.volume=366&rft.issue=1570&rft.spage=1621&rft.epage=1631&rft.pages=1621-1631&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2010.0347&rft_dat=%3Cjstor_istex%3E23035565%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862794083&rft_id=info:pmid/21502131&rft_jstor_id=23035565&rfr_iscdi=true |