Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model

Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2011-05, Vol.366 (1570), p.1621-1631
Hauptverfasser: Markowitz, Jared, Krishnaswamy, Pavitra, Eilenberg, Michael F., Endo, Ken, Barnhart, Chris, Herr, Hugh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1631
container_issue 1570
container_start_page 1621
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 366
creator Markowitz, Jared
Krishnaswamy, Pavitra
Eilenberg, Michael F.
Endo, Ken
Barnhart, Chris
Herr, Hugh
description Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.
doi_str_mv 10.1098/rstb.2010.0347
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_ST4LMR3P_Q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23035565</jstor_id><sourcerecordid>23035565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</originalsourceid><addsrcrecordid>eNqFkb2P1DAQxSME4paDlg6UjiqLP5O4QUInOJAW8XErChpr4kxYL9k42M4d-9_jKMcCBaKyxu83TzPzsuwxJWtKVP3ch9isGUkl4aK6k62oqGjBVEXuZiuiSlbUgpdn2YMQ9oQQJStxPztjVBJGOV1lX65GxDaHFsYI0boht0MO-ehu0Kf_6GEI0TYW-nz0LsQdBhty44boXd8n4sbGXWoYcPLuMAUz9eDzg2uxf5jd66AP-Oj2Pc-2r19tL94Um_eXby9ebgojmYyFBGiM4bQTpKkFKY1UnTSMVQSwFA0TSBlvjVB1Z7AjigNBFKpD6MAg8PPsxWI7Ts0BW4NpNOj16O0B_FE7sPpvZbA7_dVda045EaJOBs9uDbz7PmGI-mCDwb6HAd0UtCIVlYop_l-yLlmlBKlncr2QJh0teOxO81Ci5-D0HJyeg9NzcKnh6Z9bnPBfSSWAL4B3x3RNZyzGo967yQ-p_Lftk6VrH6Lzv1054VKWMunFotsQ8cdJB_9NlxWvpP5cC321FZt3n_gH_ZH_BP-0wlI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862794083</pqid></control><display><type>article</type><title>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Markowitz, Jared ; Krishnaswamy, Pavitra ; Eilenberg, Michael F. ; Endo, Ken ; Barnhart, Chris ; Herr, Hugh</creator><creatorcontrib>Markowitz, Jared ; Krishnaswamy, Pavitra ; Eilenberg, Michael F. ; Endo, Ken ; Barnhart, Chris ; Herr, Hugh</creatorcontrib><description>Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2010.0347</identifier><identifier>PMID: 21502131</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Amputees ; Ankle ; Ankle joint ; Ankle Joint - physiology ; Artificial Limbs ; Feedback, Physiological ; Flexors ; Foot - physiology ; Gait ; Humans ; Knees ; Models, Anatomic ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Muscles ; Neuromuscular Model ; Powered Prosthesis ; Prosthesis Control ; Prosthesis Design - methods ; Prosthetics ; Speed ; Speed Adaptation ; Tendons - physiology ; Torque ; Walking ; Walking - physiology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2011-05, Vol.366 (1570), p.1621-1631</ispartof><rights>Copyright © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</citedby><cites>FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23035565$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23035565$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21502131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Markowitz, Jared</creatorcontrib><creatorcontrib>Krishnaswamy, Pavitra</creatorcontrib><creatorcontrib>Eilenberg, Michael F.</creatorcontrib><creatorcontrib>Endo, Ken</creatorcontrib><creatorcontrib>Barnhart, Chris</creatorcontrib><creatorcontrib>Herr, Hugh</creatorcontrib><title>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Phil. Trans. R. Soc. B</addtitle><description>Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.</description><subject>Amputees</subject><subject>Ankle</subject><subject>Ankle joint</subject><subject>Ankle Joint - physiology</subject><subject>Artificial Limbs</subject><subject>Feedback, Physiological</subject><subject>Flexors</subject><subject>Foot - physiology</subject><subject>Gait</subject><subject>Humans</subject><subject>Knees</subject><subject>Models, Anatomic</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Neuromuscular Model</subject><subject>Powered Prosthesis</subject><subject>Prosthesis Control</subject><subject>Prosthesis Design - methods</subject><subject>Prosthetics</subject><subject>Speed</subject><subject>Speed Adaptation</subject><subject>Tendons - physiology</subject><subject>Torque</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb2P1DAQxSME4paDlg6UjiqLP5O4QUInOJAW8XErChpr4kxYL9k42M4d-9_jKMcCBaKyxu83TzPzsuwxJWtKVP3ch9isGUkl4aK6k62oqGjBVEXuZiuiSlbUgpdn2YMQ9oQQJStxPztjVBJGOV1lX65GxDaHFsYI0boht0MO-ehu0Kf_6GEI0TYW-nz0LsQdBhty44boXd8n4sbGXWoYcPLuMAUz9eDzg2uxf5jd66AP-Oj2Pc-2r19tL94Um_eXby9ebgojmYyFBGiM4bQTpKkFKY1UnTSMVQSwFA0TSBlvjVB1Z7AjigNBFKpD6MAg8PPsxWI7Ts0BW4NpNOj16O0B_FE7sPpvZbA7_dVda045EaJOBs9uDbz7PmGI-mCDwb6HAd0UtCIVlYop_l-yLlmlBKlncr2QJh0teOxO81Ci5-D0HJyeg9NzcKnh6Z9bnPBfSSWAL4B3x3RNZyzGo967yQ-p_Lftk6VrH6Lzv1054VKWMunFotsQ8cdJB_9NlxWvpP5cC321FZt3n_gH_ZH_BP-0wlI</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Markowitz, Jared</creator><creator>Krishnaswamy, Pavitra</creator><creator>Eilenberg, Michael F.</creator><creator>Endo, Ken</creator><creator>Barnhart, Chris</creator><creator>Herr, Hugh</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>7TK</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20110527</creationdate><title>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</title><author>Markowitz, Jared ; Krishnaswamy, Pavitra ; Eilenberg, Michael F. ; Endo, Ken ; Barnhart, Chris ; Herr, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-5aabcc31f40b8406c59f5c2270ae64b24e123dc498fcef093a0ee49feafacea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amputees</topic><topic>Ankle</topic><topic>Ankle joint</topic><topic>Ankle Joint - physiology</topic><topic>Artificial Limbs</topic><topic>Feedback, Physiological</topic><topic>Flexors</topic><topic>Foot - physiology</topic><topic>Gait</topic><topic>Humans</topic><topic>Knees</topic><topic>Models, Anatomic</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Neuromuscular Model</topic><topic>Powered Prosthesis</topic><topic>Prosthesis Control</topic><topic>Prosthesis Design - methods</topic><topic>Prosthetics</topic><topic>Speed</topic><topic>Speed Adaptation</topic><topic>Tendons - physiology</topic><topic>Torque</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markowitz, Jared</creatorcontrib><creatorcontrib>Krishnaswamy, Pavitra</creatorcontrib><creatorcontrib>Eilenberg, Michael F.</creatorcontrib><creatorcontrib>Endo, Ken</creatorcontrib><creatorcontrib>Barnhart, Chris</creatorcontrib><creatorcontrib>Herr, Hugh</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markowitz, Jared</au><au>Krishnaswamy, Pavitra</au><au>Eilenberg, Michael F.</au><au>Endo, Ken</au><au>Barnhart, Chris</au><au>Herr, Hugh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Phil. Trans. R. Soc. B</addtitle><date>2011-05-27</date><risdate>2011</risdate><volume>366</volume><issue>1570</issue><spage>1621</spage><epage>1631</epage><pages>1621-1631</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Control schemes for powered ankle–foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle–tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle–foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>21502131</pmid><doi>10.1098/rstb.2010.0347</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2011-05, Vol.366 (1570), p.1621-1631
issn 0962-8436
1471-2970
language eng
recordid cdi_istex_primary_ark_67375_V84_ST4LMR3P_Q
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Amputees
Ankle
Ankle joint
Ankle Joint - physiology
Artificial Limbs
Feedback, Physiological
Flexors
Foot - physiology
Gait
Humans
Knees
Models, Anatomic
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Muscles
Neuromuscular Model
Powered Prosthesis
Prosthesis Control
Prosthesis Design - methods
Prosthetics
Speed
Speed Adaptation
Tendons - physiology
Torque
Walking
Walking - physiology
title Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speed%20adaptation%20in%20a%20powered%20transtibial%20prosthesis%20controlled%20with%20a%20neuromuscular%20model&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Markowitz,%20Jared&rft.date=2011-05-27&rft.volume=366&rft.issue=1570&rft.spage=1621&rft.epage=1631&rft.pages=1621-1631&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2010.0347&rft_dat=%3Cjstor_istex%3E23035565%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862794083&rft_id=info:pmid/21502131&rft_jstor_id=23035565&rfr_iscdi=true