Effect of surface elasticity on an interface crack in plane deformations
We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2011-12, Vol.467 (2136), p.3530-3549 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3549 |
---|---|
container_issue | 2136 |
container_start_page | 3530 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 467 |
creator | Kim, C. I. Schiavone, P. Ru, C.-Q. |
description | We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin & Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips. |
doi_str_mv | 10.1098/rspa.2011.0311 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_MQ4G7XQ5_Q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23058748</jstor_id><sourcerecordid>23058748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</originalsourceid><addsrcrecordid>eNp9kVtLwzAcxYsoOKevvgn9Ap25tUkfx5hOmOi84VtIswSyS1OSTKyf3tTKQESfkj-_nHOSkyQ5h2AEQckunW_ECAEIRwBDeJAMIKEwQyUpDuMeFyTLAYLHyYn3KwBAmTM6SGZTrZUMqdWp3zktpErVRvhgpAltautU1Kmpg-qRdEKu45w2G1GrdKm0dVsRjK39aXKkxcars-91mDxfTZ8ms2x-d30zGc8zkWMUMlZgoAlbKlQVqKwYQppSUBVSkophQpY5whhqWoEKUSFLiDFRJRFYVjoHpcDDZNT7Sme9d0rzxpmtcC2HgHc98K4H3vXAux6iAPcCZ9t4MSuNCi1f2Z2r4_i3av2f6uHxfvxGCmpQLJYDhiGgmBLIP0zTW0XIjfc7xb-O_LT_nXbRp618sG7_IoRB_CTCIs96bnxQ73su3JoXMTfnL4zw2wW5pq-LnC_wJ-CYnbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of surface elasticity on an interface crack in plane deformations</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Kim, C. I. ; Schiavone, P. ; Ru, C.-Q.</creator><creatorcontrib>Kim, C. I. ; Schiavone, P. ; Ru, C.-Q.</creatorcontrib><description>We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin & Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2011.0311</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Cauchy Singular Integro-Differential Equations ; Complex variables ; Deformation ; Differential equations ; Elasticity ; Fracture mechanics ; Interface Crack ; Material properties ; Materials science ; Mathematical surfaces ; Oscillatory Singularities ; Plane Deformations ; Polynomials ; Stress fields ; Surface Elasticity</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2011-12, Vol.467 (2136), p.3530-3549</ispartof><rights>COPYRIGHT © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</citedby><cites>FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23058748$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23058748$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Kim, C. I.</creatorcontrib><creatorcontrib>Schiavone, P.</creatorcontrib><creatorcontrib>Ru, C.-Q.</creatorcontrib><title>Effect of surface elasticity on an interface crack in plane deformations</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin & Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.</description><subject>Cauchy Singular Integro-Differential Equations</subject><subject>Complex variables</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Elasticity</subject><subject>Fracture mechanics</subject><subject>Interface Crack</subject><subject>Material properties</subject><subject>Materials science</subject><subject>Mathematical surfaces</subject><subject>Oscillatory Singularities</subject><subject>Plane Deformations</subject><subject>Polynomials</subject><subject>Stress fields</subject><subject>Surface Elasticity</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLwzAcxYsoOKevvgn9Ap25tUkfx5hOmOi84VtIswSyS1OSTKyf3tTKQESfkj-_nHOSkyQ5h2AEQckunW_ECAEIRwBDeJAMIKEwQyUpDuMeFyTLAYLHyYn3KwBAmTM6SGZTrZUMqdWp3zktpErVRvhgpAltautU1Kmpg-qRdEKu45w2G1GrdKm0dVsRjK39aXKkxcars-91mDxfTZ8ms2x-d30zGc8zkWMUMlZgoAlbKlQVqKwYQppSUBVSkophQpY5whhqWoEKUSFLiDFRJRFYVjoHpcDDZNT7Sme9d0rzxpmtcC2HgHc98K4H3vXAux6iAPcCZ9t4MSuNCi1f2Z2r4_i3av2f6uHxfvxGCmpQLJYDhiGgmBLIP0zTW0XIjfc7xb-O_LT_nXbRp618sG7_IoRB_CTCIs96bnxQ73su3JoXMTfnL4zw2wW5pq-LnC_wJ-CYnbg</recordid><startdate>20111208</startdate><enddate>20111208</enddate><creator>Kim, C. I.</creator><creator>Schiavone, P.</creator><creator>Ru, C.-Q.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111208</creationdate><title>Effect of surface elasticity on an interface crack in plane deformations</title><author>Kim, C. I. ; Schiavone, P. ; Ru, C.-Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cauchy Singular Integro-Differential Equations</topic><topic>Complex variables</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Elasticity</topic><topic>Fracture mechanics</topic><topic>Interface Crack</topic><topic>Material properties</topic><topic>Materials science</topic><topic>Mathematical surfaces</topic><topic>Oscillatory Singularities</topic><topic>Plane Deformations</topic><topic>Polynomials</topic><topic>Stress fields</topic><topic>Surface Elasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, C. I.</creatorcontrib><creatorcontrib>Schiavone, P.</creatorcontrib><creatorcontrib>Ru, C.-Q.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, C. I.</au><au>Schiavone, P.</au><au>Ru, C.-Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface elasticity on an interface crack in plane deformations</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2011-12-08</date><risdate>2011</risdate><volume>467</volume><issue>2136</issue><spage>3530</spage><epage>3549</epage><pages>3530-3549</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin & Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2011.0311</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2011-12, Vol.467 (2136), p.3530-3549 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_MQ4G7XQ5_Q |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Cauchy Singular Integro-Differential Equations Complex variables Deformation Differential equations Elasticity Fracture mechanics Interface Crack Material properties Materials science Mathematical surfaces Oscillatory Singularities Plane Deformations Polynomials Stress fields Surface Elasticity |
title | Effect of surface elasticity on an interface crack in plane deformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20elasticity%20on%20an%20interface%20crack%20in%20plane%20deformations&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kim,%20C.%20I.&rft.date=2011-12-08&rft.volume=467&rft.issue=2136&rft.spage=3530&rft.epage=3549&rft.pages=3530-3549&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2011.0311&rft_dat=%3Cjstor_istex%3E23058748%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23058748&rfr_iscdi=true |