Effect of surface elasticity on an interface crack in plane deformations

We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2011-12, Vol.467 (2136), p.3530-3549
Hauptverfasser: Kim, C. I., Schiavone, P., Ru, C.-Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3549
container_issue 2136
container_start_page 3530
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 467
creator Kim, C. I.
Schiavone, P.
Ru, C.-Q.
description We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin & Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.
doi_str_mv 10.1098/rspa.2011.0311
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_MQ4G7XQ5_Q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23058748</jstor_id><sourcerecordid>23058748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</originalsourceid><addsrcrecordid>eNp9kVtLwzAcxYsoOKevvgn9Ap25tUkfx5hOmOi84VtIswSyS1OSTKyf3tTKQESfkj-_nHOSkyQ5h2AEQckunW_ECAEIRwBDeJAMIKEwQyUpDuMeFyTLAYLHyYn3KwBAmTM6SGZTrZUMqdWp3zktpErVRvhgpAltautU1Kmpg-qRdEKu45w2G1GrdKm0dVsRjK39aXKkxcars-91mDxfTZ8ms2x-d30zGc8zkWMUMlZgoAlbKlQVqKwYQppSUBVSkophQpY5whhqWoEKUSFLiDFRJRFYVjoHpcDDZNT7Sme9d0rzxpmtcC2HgHc98K4H3vXAux6iAPcCZ9t4MSuNCi1f2Z2r4_i3av2f6uHxfvxGCmpQLJYDhiGgmBLIP0zTW0XIjfc7xb-O_LT_nXbRp618sG7_IoRB_CTCIs96bnxQ73su3JoXMTfnL4zw2wW5pq-LnC_wJ-CYnbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of surface elasticity on an interface crack in plane deformations</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Kim, C. I. ; Schiavone, P. ; Ru, C.-Q.</creator><creatorcontrib>Kim, C. I. ; Schiavone, P. ; Ru, C.-Q.</creatorcontrib><description>We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin &amp; Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2011.0311</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Cauchy Singular Integro-Differential Equations ; Complex variables ; Deformation ; Differential equations ; Elasticity ; Fracture mechanics ; Interface Crack ; Material properties ; Materials science ; Mathematical surfaces ; Oscillatory Singularities ; Plane Deformations ; Polynomials ; Stress fields ; Surface Elasticity</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2011-12, Vol.467 (2136), p.3530-3549</ispartof><rights>COPYRIGHT © 2011 The Royal Society</rights><rights>This journal is © 2011 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</citedby><cites>FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23058748$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23058748$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Kim, C. I.</creatorcontrib><creatorcontrib>Schiavone, P.</creatorcontrib><creatorcontrib>Ru, C.-Q.</creatorcontrib><title>Effect of surface elasticity on an interface crack in plane deformations</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin &amp; Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.</description><subject>Cauchy Singular Integro-Differential Equations</subject><subject>Complex variables</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Elasticity</subject><subject>Fracture mechanics</subject><subject>Interface Crack</subject><subject>Material properties</subject><subject>Materials science</subject><subject>Mathematical surfaces</subject><subject>Oscillatory Singularities</subject><subject>Plane Deformations</subject><subject>Polynomials</subject><subject>Stress fields</subject><subject>Surface Elasticity</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLwzAcxYsoOKevvgn9Ap25tUkfx5hOmOi84VtIswSyS1OSTKyf3tTKQESfkj-_nHOSkyQ5h2AEQckunW_ECAEIRwBDeJAMIKEwQyUpDuMeFyTLAYLHyYn3KwBAmTM6SGZTrZUMqdWp3zktpErVRvhgpAltautU1Kmpg-qRdEKu45w2G1GrdKm0dVsRjK39aXKkxcars-91mDxfTZ8ms2x-d30zGc8zkWMUMlZgoAlbKlQVqKwYQppSUBVSkophQpY5whhqWoEKUSFLiDFRJRFYVjoHpcDDZNT7Sme9d0rzxpmtcC2HgHc98K4H3vXAux6iAPcCZ9t4MSuNCi1f2Z2r4_i3av2f6uHxfvxGCmpQLJYDhiGgmBLIP0zTW0XIjfc7xb-O_LT_nXbRp618sG7_IoRB_CTCIs96bnxQ73su3JoXMTfnL4zw2wW5pq-LnC_wJ-CYnbg</recordid><startdate>20111208</startdate><enddate>20111208</enddate><creator>Kim, C. I.</creator><creator>Schiavone, P.</creator><creator>Ru, C.-Q.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111208</creationdate><title>Effect of surface elasticity on an interface crack in plane deformations</title><author>Kim, C. I. ; Schiavone, P. ; Ru, C.-Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-8630f48de2b629b822f770b6cc4b8344d52331f7b0b27ac91334e94a3cbf509a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cauchy Singular Integro-Differential Equations</topic><topic>Complex variables</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Elasticity</topic><topic>Fracture mechanics</topic><topic>Interface Crack</topic><topic>Material properties</topic><topic>Materials science</topic><topic>Mathematical surfaces</topic><topic>Oscillatory Singularities</topic><topic>Plane Deformations</topic><topic>Polynomials</topic><topic>Stress fields</topic><topic>Surface Elasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, C. I.</creatorcontrib><creatorcontrib>Schiavone, P.</creatorcontrib><creatorcontrib>Ru, C.-Q.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, C. I.</au><au>Schiavone, P.</au><au>Ru, C.-Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface elasticity on an interface crack in plane deformations</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2011-12-08</date><risdate>2011</risdate><volume>467</volume><issue>2136</issue><spage>3530</spage><epage>3549</epage><pages>3530-3549</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin &amp; Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2011.0311</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2011-12, Vol.467 (2136), p.3530-3549
issn 1364-5021
1471-2946
language eng
recordid cdi_istex_primary_ark_67375_V84_MQ4G7XQ5_Q
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Cauchy Singular Integro-Differential Equations
Complex variables
Deformation
Differential equations
Elasticity
Fracture mechanics
Interface Crack
Material properties
Materials science
Mathematical surfaces
Oscillatory Singularities
Plane Deformations
Polynomials
Stress fields
Surface Elasticity
title Effect of surface elasticity on an interface crack in plane deformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20elasticity%20on%20an%20interface%20crack%20in%20plane%20deformations&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kim,%20C.%20I.&rft.date=2011-12-08&rft.volume=467&rft.issue=2136&rft.spage=3530&rft.epage=3549&rft.pages=3530-3549&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2011.0311&rft_dat=%3Cjstor_istex%3E23058748%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23058748&rfr_iscdi=true