Eigenvalues, and Instabilities of Solitary Waves
We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clari...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1992-07, Vol.340 (1656), p.47-94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1656 |
container_start_page | 47 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 340 |
creator | Pego, Robert L. Weinstein, Michael I. |
description | We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability. |
doi_str_mv | 10.1098/rsta.1992.0055 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_HPH9RZL5_M</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>53962</jstor_id><sourcerecordid>53962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRBIlMKWBatIsCRTv-1skKqqMJUGgdryEJsrx-O0HkIS7MzA8PXcTKqBCtGFFUf3nHsezrKnlMwoKc1RTIOd0bJkM0KkvJcdUKFpwUrF7uOdK1FIwj8_zB6ltCKEUiXZQUZOw5VvN7ZZ-_Qyt-0yP2txTxWaMASf8q7OLzq827jNP9mNT4-zB7Vtkn9y8z3MPrw-vTyZF4t3b85OjheFk5wMBfXOakYUr5V1Wril0Iab0nrjTK2JEcJSWWk8tVpSqyvjS1sRyUpXUco4P8yeT3v72H1HcwOsunVsURIoJ4YZiikRNZtQLnYpRV9DH8M3NAuUwNgKjK3A2AqMrSDhxc1am5xt6mhbF9KehY1RQRjC0gSL3RYlOxf8sP3j4Pzi8hh3kg0XJGCRCojhlChUYPAr9DvVEQAIgJDS2sMOdtvNv-b4Xar_jfRsYq3S0MV9FMnx5XFYTMOQBv9zP7TxKyjNtYSPRsD8_bw8_7KQ8BbxRxP-Olxd_wjRwy0v-NOj-Jhql0doZLy6kzGadV07-Hb4mwf1ummgX9b8N78h1sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308281005</pqid></control><display><type>article</type><title>Eigenvalues, and Instabilities of Solitary Waves</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>Pego, Robert L. ; Weinstein, Michael I.</creator><creatorcontrib>Pego, Robert L. ; Weinstein, Michael I.</creatorcontrib><description>We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0962-8428</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0299</identifier><identifier>DOI: 10.1098/rsta.1992.0055</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Constant coefficients ; Eigenfunctions ; Eigenvalues ; Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Ordinary differential equations ; Physics ; Plasma stability ; Solitons ; Spectral theory ; Trajectories ; Transition curves</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1992-07, Vol.340 (1656), p.47-94</ispartof><rights>Copyright 1992 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</citedby><cites>FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/53962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/53962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4711402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pego, Robert L.</creatorcontrib><creatorcontrib>Weinstein, Michael I.</creatorcontrib><title>Eigenvalues, and Instabilities of Solitary Waves</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.</description><subject>Constant coefficients</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Plasma stability</subject><subject>Solitons</subject><subject>Spectral theory</subject><subject>Trajectories</subject><subject>Transition curves</subject><issn>1364-503X</issn><issn>0962-8428</issn><issn>1471-2962</issn><issn>2054-0299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9Uctu1DAUjRBIlMKWBatIsCRTv-1skKqqMJUGgdryEJsrx-O0HkIS7MzA8PXcTKqBCtGFFUf3nHsezrKnlMwoKc1RTIOd0bJkM0KkvJcdUKFpwUrF7uOdK1FIwj8_zB6ltCKEUiXZQUZOw5VvN7ZZ-_Qyt-0yP2txTxWaMASf8q7OLzq827jNP9mNT4-zB7Vtkn9y8z3MPrw-vTyZF4t3b85OjheFk5wMBfXOakYUr5V1Wril0Iab0nrjTK2JEcJSWWk8tVpSqyvjS1sRyUpXUco4P8yeT3v72H1HcwOsunVsURIoJ4YZiikRNZtQLnYpRV9DH8M3NAuUwNgKjK3A2AqMrSDhxc1am5xt6mhbF9KehY1RQRjC0gSL3RYlOxf8sP3j4Pzi8hh3kg0XJGCRCojhlChUYPAr9DvVEQAIgJDS2sMOdtvNv-b4Xar_jfRsYq3S0MV9FMnx5XFYTMOQBv9zP7TxKyjNtYSPRsD8_bw8_7KQ8BbxRxP-Olxd_wjRwy0v-NOj-Jhql0doZLy6kzGadV07-Hb4mwf1ummgX9b8N78h1sw</recordid><startdate>19920715</startdate><enddate>19920715</enddate><creator>Pego, Robert L.</creator><creator>Weinstein, Michael I.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19920715</creationdate><title>Eigenvalues, and Instabilities of Solitary Waves</title><author>Pego, Robert L. ; Weinstein, Michael I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Constant coefficients</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Plasma stability</topic><topic>Solitons</topic><topic>Spectral theory</topic><topic>Trajectories</topic><topic>Transition curves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pego, Robert L.</creatorcontrib><creatorcontrib>Weinstein, Michael I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pego, Robert L.</au><au>Weinstein, Michael I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalues, and Instabilities of Solitary Waves</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><date>1992-07-15</date><risdate>1992</risdate><volume>340</volume><issue>1656</issue><spage>47</spage><epage>94</epage><pages>47-94</pages><issn>1364-503X</issn><issn>0962-8428</issn><eissn>1471-2962</eissn><eissn>2054-0299</eissn><abstract>We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1992.0055</doi><tpages>48</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1992-07, Vol.340 (1656), p.47-94 |
issn | 1364-503X 0962-8428 1471-2962 2054-0299 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_HPH9RZL5_M |
source | Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Constant coefficients Eigenfunctions Eigenvalues Exact sciences and technology Function theory, analysis Mathematical methods in physics Ordinary differential equations Physics Plasma stability Solitons Spectral theory Trajectories Transition curves |
title | Eigenvalues, and Instabilities of Solitary Waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalues,%20and%20Instabilities%20of%20Solitary%20Waves&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Pego,%20Robert%20L.&rft.date=1992-07-15&rft.volume=340&rft.issue=1656&rft.spage=47&rft.epage=94&rft.pages=47-94&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1992.0055&rft_dat=%3Cjstor_istex%3E53962%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308281005&rft_id=info:pmid/&rft_jstor_id=53962&rfr_iscdi=true |