Eigenvalues, and Instabilities of Solitary Waves

We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1992-07, Vol.340 (1656), p.47-94
Hauptverfasser: Pego, Robert L., Weinstein, Michael I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1656
container_start_page 47
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 340
creator Pego, Robert L.
Weinstein, Michael I.
description We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.
doi_str_mv 10.1098/rsta.1992.0055
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_HPH9RZL5_M</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>53962</jstor_id><sourcerecordid>53962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRBIlMKWBatIsCRTv-1skKqqMJUGgdryEJsrx-O0HkIS7MzA8PXcTKqBCtGFFUf3nHsezrKnlMwoKc1RTIOd0bJkM0KkvJcdUKFpwUrF7uOdK1FIwj8_zB6ltCKEUiXZQUZOw5VvN7ZZ-_Qyt-0yP2txTxWaMASf8q7OLzq827jNP9mNT4-zB7Vtkn9y8z3MPrw-vTyZF4t3b85OjheFk5wMBfXOakYUr5V1Wril0Iab0nrjTK2JEcJSWWk8tVpSqyvjS1sRyUpXUco4P8yeT3v72H1HcwOsunVsURIoJ4YZiikRNZtQLnYpRV9DH8M3NAuUwNgKjK3A2AqMrSDhxc1am5xt6mhbF9KehY1RQRjC0gSL3RYlOxf8sP3j4Pzi8hh3kg0XJGCRCojhlChUYPAr9DvVEQAIgJDS2sMOdtvNv-b4Xar_jfRsYq3S0MV9FMnx5XFYTMOQBv9zP7TxKyjNtYSPRsD8_bw8_7KQ8BbxRxP-Olxd_wjRwy0v-NOj-Jhql0doZLy6kzGadV07-Hb4mwf1ummgX9b8N78h1sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308281005</pqid></control><display><type>article</type><title>Eigenvalues, and Instabilities of Solitary Waves</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Pego, Robert L. ; Weinstein, Michael I.</creator><creatorcontrib>Pego, Robert L. ; Weinstein, Michael I.</creatorcontrib><description>We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0962-8428</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0299</identifier><identifier>DOI: 10.1098/rsta.1992.0055</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Constant coefficients ; Eigenfunctions ; Eigenvalues ; Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Ordinary differential equations ; Physics ; Plasma stability ; Solitons ; Spectral theory ; Trajectories ; Transition curves</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1992-07, Vol.340 (1656), p.47-94</ispartof><rights>Copyright 1992 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</citedby><cites>FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/53962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/53962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4711402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pego, Robert L.</creatorcontrib><creatorcontrib>Weinstein, Michael I.</creatorcontrib><title>Eigenvalues, and Instabilities of Solitary Waves</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.</description><subject>Constant coefficients</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Plasma stability</subject><subject>Solitons</subject><subject>Spectral theory</subject><subject>Trajectories</subject><subject>Transition curves</subject><issn>1364-503X</issn><issn>0962-8428</issn><issn>1471-2962</issn><issn>2054-0299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9Uctu1DAUjRBIlMKWBatIsCRTv-1skKqqMJUGgdryEJsrx-O0HkIS7MzA8PXcTKqBCtGFFUf3nHsezrKnlMwoKc1RTIOd0bJkM0KkvJcdUKFpwUrF7uOdK1FIwj8_zB6ltCKEUiXZQUZOw5VvN7ZZ-_Qyt-0yP2txTxWaMASf8q7OLzq827jNP9mNT4-zB7Vtkn9y8z3MPrw-vTyZF4t3b85OjheFk5wMBfXOakYUr5V1Wril0Iab0nrjTK2JEcJSWWk8tVpSqyvjS1sRyUpXUco4P8yeT3v72H1HcwOsunVsURIoJ4YZiikRNZtQLnYpRV9DH8M3NAuUwNgKjK3A2AqMrSDhxc1am5xt6mhbF9KehY1RQRjC0gSL3RYlOxf8sP3j4Pzi8hh3kg0XJGCRCojhlChUYPAr9DvVEQAIgJDS2sMOdtvNv-b4Xar_jfRsYq3S0MV9FMnx5XFYTMOQBv9zP7TxKyjNtYSPRsD8_bw8_7KQ8BbxRxP-Olxd_wjRwy0v-NOj-Jhql0doZLy6kzGadV07-Hb4mwf1ummgX9b8N78h1sw</recordid><startdate>19920715</startdate><enddate>19920715</enddate><creator>Pego, Robert L.</creator><creator>Weinstein, Michael I.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19920715</creationdate><title>Eigenvalues, and Instabilities of Solitary Waves</title><author>Pego, Robert L. ; Weinstein, Michael I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-1eca72063f6ac74cd478389ae8c8f70844a15b715bf6d1a7b8e9ab0529cb11233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Constant coefficients</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Plasma stability</topic><topic>Solitons</topic><topic>Spectral theory</topic><topic>Trajectories</topic><topic>Transition curves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pego, Robert L.</creatorcontrib><creatorcontrib>Weinstein, Michael I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pego, Robert L.</au><au>Weinstein, Michael I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalues, and Instabilities of Solitary Waves</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><date>1992-07-15</date><risdate>1992</risdate><volume>340</volume><issue>1656</issue><spage>47</spage><epage>94</epage><pages>47-94</pages><issn>1364-503X</issn><issn>0962-8428</issn><eissn>1471-2962</eissn><eissn>2054-0299</eissn><abstract>We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic function D(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory of D(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives of D(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability does not involve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1992.0055</doi><tpages>48</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1992-07, Vol.340 (1656), p.47-94
issn 1364-503X
0962-8428
1471-2962
2054-0299
language eng
recordid cdi_istex_primary_ark_67375_V84_HPH9RZL5_M
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Constant coefficients
Eigenfunctions
Eigenvalues
Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Ordinary differential equations
Physics
Plasma stability
Solitons
Spectral theory
Trajectories
Transition curves
title Eigenvalues, and Instabilities of Solitary Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalues,%20and%20Instabilities%20of%20Solitary%20Waves&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Pego,%20Robert%20L.&rft.date=1992-07-15&rft.volume=340&rft.issue=1656&rft.spage=47&rft.epage=94&rft.pages=47-94&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1992.0055&rft_dat=%3Cjstor_istex%3E53962%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308281005&rft_id=info:pmid/&rft_jstor_id=53962&rfr_iscdi=true