Quantum analogue computing

We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-08, Vol.368 (1924), p.3609-3620
Hauptverfasser: Kendon, Vivien M., Nemoto, Kae, Munro, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3620
container_issue 1924
container_start_page 3609
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 368
creator Kendon, Vivien M.
Nemoto, Kae
Munro, William J.
description We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
doi_str_mv 10.1098/rsta.2010.0017
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_DR12Z5KJ_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25699189</jstor_id><sourcerecordid>25699189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</originalsourceid><addsrcrecordid>eNp9kMtP3DAQh62qiFe5cqjUihunLLbHzyPiWVgJlW4rxMVygoOybNaLHVdd_nqchocQak8ea775jeZDaJvgEcFa7YXY2RHF-YsxkR_QOmGSFFQL-jHXIFjBMVytoY0Yp5kggtNVtEaxwACSrKPP35Odd6ndsXM787fJ7VS-XaSumd9-Qiu1nUW39fRuop_HR5OD02J8cfLtYH9cVBxUVzChWQ2gaUmlLWWFOVgmZVmLUpUCKGdaslqIqioxVkQpZlmJpdSaKwr2BjbR7pC7CP4-udiZtomVm83s3PkUjQQQoBTVmRwNZBV8jMHVZhGa1oalIdj0Okyvw_Q6TK8jD3x9ik5l625e8Of7MwADEPwy3-irxnVLM_UpZB3x37F3_5u6_DHZ_w1CNURTZrACktdJRs1DsxiictM0MSZn_iJv499v-zJsm8bOh9cbuNCaqN5KMfSb2Lk_L30b7oyQILn5pZg5vCT0mp-fZZuPgImlgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733638829</pqid></control><display><type>article</type><title>Quantum analogue computing</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kendon, Vivien M. ; Nemoto, Kae ; Munro, William J.</creator><creatorcontrib>Kendon, Vivien M. ; Nemoto, Kae ; Munro, William J.</creatorcontrib><description>We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2010.0017</identifier><identifier>PMID: 20603371</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Algorithms ; Analog computers ; Computer memory ; Computer systems ; Continuous variables ; Informational error correction ; Mathematics ; Quantum Computation ; Quantum computers ; Quantum efficiency ; Quantum Information ; Quantum mechanics ; Quantum Simulation ; Review</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-08, Vol.368 (1924), p.3609-3620</ispartof><rights>COPYRIGHT © 2010 The Royal Society</rights><rights>2010 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</citedby><cites>FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25699189$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25699189$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27903,27904,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20603371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendon, Vivien M.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><title>Quantum analogue computing</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.</description><subject>Algorithms</subject><subject>Analog computers</subject><subject>Computer memory</subject><subject>Computer systems</subject><subject>Continuous variables</subject><subject>Informational error correction</subject><subject>Mathematics</subject><subject>Quantum Computation</subject><subject>Quantum computers</subject><subject>Quantum efficiency</subject><subject>Quantum Information</subject><subject>Quantum mechanics</subject><subject>Quantum Simulation</subject><subject>Review</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtP3DAQh62qiFe5cqjUihunLLbHzyPiWVgJlW4rxMVygoOybNaLHVdd_nqchocQak8ea775jeZDaJvgEcFa7YXY2RHF-YsxkR_QOmGSFFQL-jHXIFjBMVytoY0Yp5kggtNVtEaxwACSrKPP35Odd6ndsXM787fJ7VS-XaSumd9-Qiu1nUW39fRuop_HR5OD02J8cfLtYH9cVBxUVzChWQ2gaUmlLWWFOVgmZVmLUpUCKGdaslqIqioxVkQpZlmJpdSaKwr2BjbR7pC7CP4-udiZtomVm83s3PkUjQQQoBTVmRwNZBV8jMHVZhGa1oalIdj0Okyvw_Q6TK8jD3x9ik5l625e8Of7MwADEPwy3-irxnVLM_UpZB3x37F3_5u6_DHZ_w1CNURTZrACktdJRs1DsxiictM0MSZn_iJv499v-zJsm8bOh9cbuNCaqN5KMfSb2Lk_L30b7oyQILn5pZg5vCT0mp-fZZuPgImlgw</recordid><startdate>20100813</startdate><enddate>20100813</enddate><creator>Kendon, Vivien M.</creator><creator>Nemoto, Kae</creator><creator>Munro, William J.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100813</creationdate><title>Quantum analogue computing</title><author>Kendon, Vivien M. ; Nemoto, Kae ; Munro, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Analog computers</topic><topic>Computer memory</topic><topic>Computer systems</topic><topic>Continuous variables</topic><topic>Informational error correction</topic><topic>Mathematics</topic><topic>Quantum Computation</topic><topic>Quantum computers</topic><topic>Quantum efficiency</topic><topic>Quantum Information</topic><topic>Quantum mechanics</topic><topic>Quantum Simulation</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendon, Vivien M.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendon, Vivien M.</au><au>Nemoto, Kae</au><au>Munro, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum analogue computing</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2010-08-13</date><risdate>2010</risdate><volume>368</volume><issue>1924</issue><spage>3609</spage><epage>3620</epage><pages>3609-3620</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>20603371</pmid><doi>10.1098/rsta.2010.0017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-08, Vol.368 (1924), p.3609-3620
issn 1364-503X
1471-2962
language eng
recordid cdi_istex_primary_ark_67375_V84_DR12Z5KJ_7
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Analog computers
Computer memory
Computer systems
Continuous variables
Informational error correction
Mathematics
Quantum Computation
Quantum computers
Quantum efficiency
Quantum Information
Quantum mechanics
Quantum Simulation
Review
title Quantum analogue computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20analogue%20computing&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kendon,%20Vivien%20M.&rft.date=2010-08-13&rft.volume=368&rft.issue=1924&rft.spage=3609&rft.epage=3620&rft.pages=3609-3620&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2010.0017&rft_dat=%3Cjstor_istex%3E25699189%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733638829&rft_id=info:pmid/20603371&rft_jstor_id=25699189&rfr_iscdi=true