Quantum analogue computing
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantu...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-08, Vol.368 (1924), p.3609-3620 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3620 |
---|---|
container_issue | 1924 |
container_start_page | 3609 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 368 |
creator | Kendon, Vivien M. Nemoto, Kae Munro, William J. |
description | We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future. |
doi_str_mv | 10.1098/rsta.2010.0017 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_DR12Z5KJ_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25699189</jstor_id><sourcerecordid>25699189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</originalsourceid><addsrcrecordid>eNp9kMtP3DAQh62qiFe5cqjUihunLLbHzyPiWVgJlW4rxMVygoOybNaLHVdd_nqchocQak8ea775jeZDaJvgEcFa7YXY2RHF-YsxkR_QOmGSFFQL-jHXIFjBMVytoY0Yp5kggtNVtEaxwACSrKPP35Odd6ndsXM787fJ7VS-XaSumd9-Qiu1nUW39fRuop_HR5OD02J8cfLtYH9cVBxUVzChWQ2gaUmlLWWFOVgmZVmLUpUCKGdaslqIqioxVkQpZlmJpdSaKwr2BjbR7pC7CP4-udiZtomVm83s3PkUjQQQoBTVmRwNZBV8jMHVZhGa1oalIdj0Okyvw_Q6TK8jD3x9ik5l625e8Of7MwADEPwy3-irxnVLM_UpZB3x37F3_5u6_DHZ_w1CNURTZrACktdJRs1DsxiictM0MSZn_iJv499v-zJsm8bOh9cbuNCaqN5KMfSb2Lk_L30b7oyQILn5pZg5vCT0mp-fZZuPgImlgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733638829</pqid></control><display><type>article</type><title>Quantum analogue computing</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kendon, Vivien M. ; Nemoto, Kae ; Munro, William J.</creator><creatorcontrib>Kendon, Vivien M. ; Nemoto, Kae ; Munro, William J.</creatorcontrib><description>We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2010.0017</identifier><identifier>PMID: 20603371</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Algorithms ; Analog computers ; Computer memory ; Computer systems ; Continuous variables ; Informational error correction ; Mathematics ; Quantum Computation ; Quantum computers ; Quantum efficiency ; Quantum Information ; Quantum mechanics ; Quantum Simulation ; Review</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-08, Vol.368 (1924), p.3609-3620</ispartof><rights>COPYRIGHT © 2010 The Royal Society</rights><rights>2010 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</citedby><cites>FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25699189$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25699189$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27903,27904,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20603371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendon, Vivien M.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><title>Quantum analogue computing</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.</description><subject>Algorithms</subject><subject>Analog computers</subject><subject>Computer memory</subject><subject>Computer systems</subject><subject>Continuous variables</subject><subject>Informational error correction</subject><subject>Mathematics</subject><subject>Quantum Computation</subject><subject>Quantum computers</subject><subject>Quantum efficiency</subject><subject>Quantum Information</subject><subject>Quantum mechanics</subject><subject>Quantum Simulation</subject><subject>Review</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtP3DAQh62qiFe5cqjUihunLLbHzyPiWVgJlW4rxMVygoOybNaLHVdd_nqchocQak8ea775jeZDaJvgEcFa7YXY2RHF-YsxkR_QOmGSFFQL-jHXIFjBMVytoY0Yp5kggtNVtEaxwACSrKPP35Odd6ndsXM787fJ7VS-XaSumd9-Qiu1nUW39fRuop_HR5OD02J8cfLtYH9cVBxUVzChWQ2gaUmlLWWFOVgmZVmLUpUCKGdaslqIqioxVkQpZlmJpdSaKwr2BjbR7pC7CP4-udiZtomVm83s3PkUjQQQoBTVmRwNZBV8jMHVZhGa1oalIdj0Okyvw_Q6TK8jD3x9ik5l625e8Of7MwADEPwy3-irxnVLM_UpZB3x37F3_5u6_DHZ_w1CNURTZrACktdJRs1DsxiictM0MSZn_iJv499v-zJsm8bOh9cbuNCaqN5KMfSb2Lk_L30b7oyQILn5pZg5vCT0mp-fZZuPgImlgw</recordid><startdate>20100813</startdate><enddate>20100813</enddate><creator>Kendon, Vivien M.</creator><creator>Nemoto, Kae</creator><creator>Munro, William J.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100813</creationdate><title>Quantum analogue computing</title><author>Kendon, Vivien M. ; Nemoto, Kae ; Munro, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-4694f3392b27ab7c053a477bf6b8b63254974f66ccb0081884a4b077995823ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Analog computers</topic><topic>Computer memory</topic><topic>Computer systems</topic><topic>Continuous variables</topic><topic>Informational error correction</topic><topic>Mathematics</topic><topic>Quantum Computation</topic><topic>Quantum computers</topic><topic>Quantum efficiency</topic><topic>Quantum Information</topic><topic>Quantum mechanics</topic><topic>Quantum Simulation</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendon, Vivien M.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendon, Vivien M.</au><au>Nemoto, Kae</au><au>Munro, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum analogue computing</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2010-08-13</date><risdate>2010</risdate><volume>368</volume><issue>1924</issue><spage>3609</spage><epage>3620</epage><pages>3609-3620</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>20603371</pmid><doi>10.1098/rsta.2010.0017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-08, Vol.368 (1924), p.3609-3620 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_DR12Z5KJ_7 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analog computers Computer memory Computer systems Continuous variables Informational error correction Mathematics Quantum Computation Quantum computers Quantum efficiency Quantum Information Quantum mechanics Quantum Simulation Review |
title | Quantum analogue computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20analogue%20computing&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kendon,%20Vivien%20M.&rft.date=2010-08-13&rft.volume=368&rft.issue=1924&rft.spage=3609&rft.epage=3620&rft.pages=3609-3620&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2010.0017&rft_dat=%3Cjstor_istex%3E25699189%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733638829&rft_id=info:pmid/20603371&rft_jstor_id=25699189&rfr_iscdi=true |