Growth, decay and bifurcation of shock amplitudes under the type-II flux law

By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2007-11, Vol.463 (2087), p.2783-2798
1. Verfasser: Jordan, P.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2798
container_issue 2087
container_start_page 2783
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 463
creator Jordan, P.M
description By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.
doi_str_mv 10.1098/rspa.2007.1895
format Article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_0F60B1HJ_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20209345</jstor_id><sourcerecordid>20209345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</originalsourceid><addsrcrecordid>eNp9UMuO0zAUjRBIDANbdkj-AFKu7SSOdwyjeRRVAvHaWq4fxG0mjmyHTvh6kgaNVCFm5Wudex73ZNlrDCsMvH4XYi9XBICtcM3LJ9kZLhjOCS-qp9NMqyIvgeDn2YsYdwDAy5qdZZub4A-peYu0UXJEstNo6-wQlEzOd8hbFBuv9kje9a1LgzYRDZ02AaXGoDT2Jl-vkW2He9TKw8vsmZVtNK_-vufZ9-urb5e3-ebTzfryYpOrsqApl6zmDJRmhPO6MtZuC6nqLSdaWyI506W0RgGUWjNttMG0tJZTwBi0KkxBz7PVoquCjzEYK_rg7mQYBQYxdyHmLsTchZi7mAh0IQQ_TsG8ciaNYueH0E3f_7P2j7G-fP188auoqCNQMwE1xcAolKX47fpFagKFi3Ew4rhyKv-v25vFbReTDw8XESDAaTHj-YK7mMz9Ay7DXlSMslL8qAsB1xV8wLcfBZv23y_7jfvZHFww4uSMo7vyXTJdOgY9RiSspsIObSt6bScJ8qiEH_sQ5Smb_gGYO8l6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Jordan, P.M</creator><creatorcontrib>Jordan, P.M</creatorcontrib><description>By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2007.1895</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Amplitude ; Conductive heat transfer ; Fisher-KPP equation ; Green And Nagdhi's Type-Ii Flux Law ; Mathematical constants ; Mathematical discontinuity ; Mathematics ; Partial differential equations ; Shock And Acceleration Waves ; Shock wave propagation ; Shock waves ; Tangents ; Transcritical Bifurcation ; Travelling Wave Solution ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2007-11, Vol.463 (2087), p.2783-2798</ispartof><rights>Copyright 2007 The Royal Society</rights><rights>2007 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</citedby><cites>FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20209345$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20209345$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Jordan, P.M</creatorcontrib><title>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>PROC R SOC A</addtitle><description>By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.</description><subject>Amplitude</subject><subject>Conductive heat transfer</subject><subject>Fisher-KPP equation</subject><subject>Green And Nagdhi's Type-Ii Flux Law</subject><subject>Mathematical constants</subject><subject>Mathematical discontinuity</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Shock And Acceleration Waves</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Tangents</subject><subject>Transcritical Bifurcation</subject><subject>Travelling Wave Solution</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UMuO0zAUjRBIDANbdkj-AFKu7SSOdwyjeRRVAvHaWq4fxG0mjmyHTvh6kgaNVCFm5Wudex73ZNlrDCsMvH4XYi9XBICtcM3LJ9kZLhjOCS-qp9NMqyIvgeDn2YsYdwDAy5qdZZub4A-peYu0UXJEstNo6-wQlEzOd8hbFBuv9kje9a1LgzYRDZ02AaXGoDT2Jl-vkW2He9TKw8vsmZVtNK_-vufZ9-urb5e3-ebTzfryYpOrsqApl6zmDJRmhPO6MtZuC6nqLSdaWyI506W0RgGUWjNttMG0tJZTwBi0KkxBz7PVoquCjzEYK_rg7mQYBQYxdyHmLsTchZi7mAh0IQQ_TsG8ciaNYueH0E3f_7P2j7G-fP188auoqCNQMwE1xcAolKX47fpFagKFi3Ew4rhyKv-v25vFbReTDw8XESDAaTHj-YK7mMz9Ay7DXlSMslL8qAsB1xV8wLcfBZv23y_7jfvZHFww4uSMo7vyXTJdOgY9RiSspsIObSt6bScJ8qiEH_sQ5Smb_gGYO8l6</recordid><startdate>20071108</startdate><enddate>20071108</enddate><creator>Jordan, P.M</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20071108</creationdate><title>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</title><author>Jordan, P.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amplitude</topic><topic>Conductive heat transfer</topic><topic>Fisher-KPP equation</topic><topic>Green And Nagdhi's Type-Ii Flux Law</topic><topic>Mathematical constants</topic><topic>Mathematical discontinuity</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Shock And Acceleration Waves</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Tangents</topic><topic>Transcritical Bifurcation</topic><topic>Travelling Wave Solution</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, P.M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, P.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>PROC R SOC A</addtitle><date>2007-11-08</date><risdate>2007</risdate><volume>463</volume><issue>2087</issue><spage>2783</spage><epage>2798</epage><pages>2783-2798</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.2007.1895</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2007-11, Vol.463 (2087), p.2783-2798
issn 1364-5021
1471-2946
language eng
recordid cdi_istex_primary_ark_67375_V84_0F60B1HJ_7
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Amplitude
Conductive heat transfer
Fisher-KPP equation
Green And Nagdhi's Type-Ii Flux Law
Mathematical constants
Mathematical discontinuity
Mathematics
Partial differential equations
Shock And Acceleration Waves
Shock wave propagation
Shock waves
Tangents
Transcritical Bifurcation
Travelling Wave Solution
Waves
title Growth, decay and bifurcation of shock amplitudes under the type-II flux law
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20decay%20and%20bifurcation%20of%20shock%20amplitudes%20under%20the%20type-II%20flux%20law&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Jordan,%20P.M&rft.date=2007-11-08&rft.volume=463&rft.issue=2087&rft.spage=2783&rft.epage=2798&rft.pages=2783-2798&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2007.1895&rft_dat=%3Cjstor_istex%3E20209345%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20209345&rfr_iscdi=true