Growth, decay and bifurcation of shock amplitudes under the type-II flux law
By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wav...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2007-11, Vol.463 (2087), p.2783-2798 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2798 |
---|---|
container_issue | 2087 |
container_start_page | 2783 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 463 |
creator | Jordan, P.M |
description | By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented. |
doi_str_mv | 10.1098/rspa.2007.1895 |
format | Article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_0F60B1HJ_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20209345</jstor_id><sourcerecordid>20209345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</originalsourceid><addsrcrecordid>eNp9UMuO0zAUjRBIDANbdkj-AFKu7SSOdwyjeRRVAvHaWq4fxG0mjmyHTvh6kgaNVCFm5Wudex73ZNlrDCsMvH4XYi9XBICtcM3LJ9kZLhjOCS-qp9NMqyIvgeDn2YsYdwDAy5qdZZub4A-peYu0UXJEstNo6-wQlEzOd8hbFBuv9kje9a1LgzYRDZ02AaXGoDT2Jl-vkW2He9TKw8vsmZVtNK_-vufZ9-urb5e3-ebTzfryYpOrsqApl6zmDJRmhPO6MtZuC6nqLSdaWyI506W0RgGUWjNttMG0tJZTwBi0KkxBz7PVoquCjzEYK_rg7mQYBQYxdyHmLsTchZi7mAh0IQQ_TsG8ciaNYueH0E3f_7P2j7G-fP188auoqCNQMwE1xcAolKX47fpFagKFi3Ew4rhyKv-v25vFbReTDw8XESDAaTHj-YK7mMz9Ay7DXlSMslL8qAsB1xV8wLcfBZv23y_7jfvZHFww4uSMo7vyXTJdOgY9RiSspsIObSt6bScJ8qiEH_sQ5Smb_gGYO8l6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Jordan, P.M</creator><creatorcontrib>Jordan, P.M</creatorcontrib><description>By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2007.1895</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Amplitude ; Conductive heat transfer ; Fisher-KPP equation ; Green And Nagdhi's Type-Ii Flux Law ; Mathematical constants ; Mathematical discontinuity ; Mathematics ; Partial differential equations ; Shock And Acceleration Waves ; Shock wave propagation ; Shock waves ; Tangents ; Transcritical Bifurcation ; Travelling Wave Solution ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2007-11, Vol.463 (2087), p.2783-2798</ispartof><rights>Copyright 2007 The Royal Society</rights><rights>2007 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</citedby><cites>FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20209345$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20209345$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Jordan, P.M</creatorcontrib><title>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>PROC R SOC A</addtitle><description>By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.</description><subject>Amplitude</subject><subject>Conductive heat transfer</subject><subject>Fisher-KPP equation</subject><subject>Green And Nagdhi's Type-Ii Flux Law</subject><subject>Mathematical constants</subject><subject>Mathematical discontinuity</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Shock And Acceleration Waves</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Tangents</subject><subject>Transcritical Bifurcation</subject><subject>Travelling Wave Solution</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UMuO0zAUjRBIDANbdkj-AFKu7SSOdwyjeRRVAvHaWq4fxG0mjmyHTvh6kgaNVCFm5Wudex73ZNlrDCsMvH4XYi9XBICtcM3LJ9kZLhjOCS-qp9NMqyIvgeDn2YsYdwDAy5qdZZub4A-peYu0UXJEstNo6-wQlEzOd8hbFBuv9kje9a1LgzYRDZ02AaXGoDT2Jl-vkW2He9TKw8vsmZVtNK_-vufZ9-urb5e3-ebTzfryYpOrsqApl6zmDJRmhPO6MtZuC6nqLSdaWyI506W0RgGUWjNttMG0tJZTwBi0KkxBz7PVoquCjzEYK_rg7mQYBQYxdyHmLsTchZi7mAh0IQQ_TsG8ciaNYueH0E3f_7P2j7G-fP188auoqCNQMwE1xcAolKX47fpFagKFi3Ew4rhyKv-v25vFbReTDw8XESDAaTHj-YK7mMz9Ay7DXlSMslL8qAsB1xV8wLcfBZv23y_7jfvZHFww4uSMo7vyXTJdOgY9RiSspsIObSt6bScJ8qiEH_sQ5Smb_gGYO8l6</recordid><startdate>20071108</startdate><enddate>20071108</enddate><creator>Jordan, P.M</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20071108</creationdate><title>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</title><author>Jordan, P.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-a78970cd729986effb4ac8b92ddf2a97d5afec005dd7dede135ff930110dc4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amplitude</topic><topic>Conductive heat transfer</topic><topic>Fisher-KPP equation</topic><topic>Green And Nagdhi's Type-Ii Flux Law</topic><topic>Mathematical constants</topic><topic>Mathematical discontinuity</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Shock And Acceleration Waves</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Tangents</topic><topic>Transcritical Bifurcation</topic><topic>Travelling Wave Solution</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, P.M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, P.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, decay and bifurcation of shock amplitudes under the type-II flux law</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>PROC R SOC A</addtitle><date>2007-11-08</date><risdate>2007</risdate><volume>463</volume><issue>2087</issue><spage>2783</spage><epage>2798</epage><pages>2783-2798</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>By replacing Fick's diffusion law with Green and Nagdhi's type-II flux law, a hyperbolic counterpart to the classical Fisher-KPP equation is obtained. In this article, an analytical study of this partial differential equation is presented with an emphasis on shock and related kinematic wave phenomena. First, an exact travelling wave solution (TWS) is derived and examined. Then, using singular surface theory, exact amplitude expressions for both shock and acceleration waves are obtained. In addition, the issue of shock stability is addressed and the limitations of the model are noted. It is shown that discontinuity (i.e. shock) formation in the TWS occurs only when the propagation speed, which must exceed the characteristic speed, tends to the latter. It is also shown that the shock amplitude equation undergoes a transcritical bifurcation. Lastly, numerical simulations of acceleration waves in a simple model problem are presented.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.2007.1895</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2007-11, Vol.463 (2087), p.2783-2798 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_0F60B1HJ_7 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Amplitude Conductive heat transfer Fisher-KPP equation Green And Nagdhi's Type-Ii Flux Law Mathematical constants Mathematical discontinuity Mathematics Partial differential equations Shock And Acceleration Waves Shock wave propagation Shock waves Tangents Transcritical Bifurcation Travelling Wave Solution Waves |
title | Growth, decay and bifurcation of shock amplitudes under the type-II flux law |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20decay%20and%20bifurcation%20of%20shock%20amplitudes%20under%20the%20type-II%20flux%20law&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Jordan,%20P.M&rft.date=2007-11-08&rft.volume=463&rft.issue=2087&rft.spage=2783&rft.epage=2798&rft.pages=2783-2798&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2007.1895&rft_dat=%3Cjstor_istex%3E20209345%3C/jstor_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20209345&rfr_iscdi=true |