The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals

SnO2 nanocrystals were prepared by injecting a hydrolyzed methanol solution of SnCl4 into a tetradecene solution of dodecylamine. The resulting materials were annealed at 500 °C, providing 6−8 nm nanocrystals. The latter were used for fabricating NO2 gas sensing devices, which displayed remarkable e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2008-12, Vol.112 (49), p.19540-19546
Hauptverfasser: Epifani, Mauro, Prades, Joan Daniel, Comini, Elisabetta, Pellicer, Eva, Avella, Manuel, Siciliano, Pietro, Faglia, Guido, Cirera, Albert, Scotti, Roberto, Morazzoni, Franca, Morante, Joan Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19546
container_issue 49
container_start_page 19540
container_title Journal of physical chemistry. C
container_volume 112
creator Epifani, Mauro
Prades, Joan Daniel
Comini, Elisabetta
Pellicer, Eva
Avella, Manuel
Siciliano, Pietro
Faglia, Guido
Cirera, Albert
Scotti, Roberto
Morazzoni, Franca
Morante, Joan Ramon
description SnO2 nanocrystals were prepared by injecting a hydrolyzed methanol solution of SnCl4 into a tetradecene solution of dodecylamine. The resulting materials were annealed at 500 °C, providing 6−8 nm nanocrystals. The latter were used for fabricating NO2 gas sensing devices, which displayed remarkable electrical responses to as low as 100 ppb NO2 concentration. The nanocrystals were characterized by conductometric measurements, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and cathodoluminescence (CL) spectroscopy. The results, interpreted by means of molecular modeling in the frame of the density functional theory (DFT), indicated that the nanocrystals contain topographically well-defined surface oxygen vacancies. The chemisorption properties of these vacancies, studied by DFT modeling of the NO2/SnO2 interaction, suggested that the in-plane vacancies facilitate the NO2 adsorption at low operating temperatures, while the bridging vacancies, generated by heat treatment at 500 °C, enhance the charge transfer from the surface to the adsorbate. The behavior of the oxygen vacancies in the adsorption properties revealed a gas response mechanism in oxide nanocrystals more complex than the size dependence alone. In particular, the nanocrystals surface must be characterized by enhanced transducing properties for obtaining relevant gas responses.
doi_str_mv 10.1021/jp804916g
format Article
fullrecord <record><control><sourceid>istex_acs_j</sourceid><recordid>TN_cdi_istex_primary_ark_67375_TPS_TFJZ3HG8_W</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_TFJZ3HG8_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-24b74c8da7725d7f0f35dd0ba9193c8b7a93ef09ef456a7fc1317ba1fee039673</originalsourceid><addsrcrecordid>eNo9kEFPAjEUhBujiYge_Ae9eFxtt1u6PRoioCFAZJXES_O22-Ku2CXtksC_twTDaV4y37xMBqF7Sh4pSelTs81JJulgfYF6VLI0ERnnl-c7E9foJoSGEM4IZT20Kr4Nfm83BrcWL3fegjZ4vj-sjcOfoMHp2gRcO9xFbjZP8dK4ULs1Xvh2a3x3dI9JF60ZuFb7Q-hgE27RlY1i7v61jz5GL8Vwkkzn49fh8zSBNJddkmalyHRegRApr4QllvGqIiXIWFjnpQDJjCXS2IwPQFhNGRUlUGsMYXIgWB8lp7916MxebX39C_6gwP-o6AquisVSFaO3LzYZ52oV-YcTDzqopt15F9spStRxPXVej_0BuSlhAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals</title><source>American Chemical Society Journals</source><creator>Epifani, Mauro ; Prades, Joan Daniel ; Comini, Elisabetta ; Pellicer, Eva ; Avella, Manuel ; Siciliano, Pietro ; Faglia, Guido ; Cirera, Albert ; Scotti, Roberto ; Morazzoni, Franca ; Morante, Joan Ramon</creator><creatorcontrib>Epifani, Mauro ; Prades, Joan Daniel ; Comini, Elisabetta ; Pellicer, Eva ; Avella, Manuel ; Siciliano, Pietro ; Faglia, Guido ; Cirera, Albert ; Scotti, Roberto ; Morazzoni, Franca ; Morante, Joan Ramon</creatorcontrib><description>SnO2 nanocrystals were prepared by injecting a hydrolyzed methanol solution of SnCl4 into a tetradecene solution of dodecylamine. The resulting materials were annealed at 500 °C, providing 6−8 nm nanocrystals. The latter were used for fabricating NO2 gas sensing devices, which displayed remarkable electrical responses to as low as 100 ppb NO2 concentration. The nanocrystals were characterized by conductometric measurements, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and cathodoluminescence (CL) spectroscopy. The results, interpreted by means of molecular modeling in the frame of the density functional theory (DFT), indicated that the nanocrystals contain topographically well-defined surface oxygen vacancies. The chemisorption properties of these vacancies, studied by DFT modeling of the NO2/SnO2 interaction, suggested that the in-plane vacancies facilitate the NO2 adsorption at low operating temperatures, while the bridging vacancies, generated by heat treatment at 500 °C, enhance the charge transfer from the surface to the adsorbate. The behavior of the oxygen vacancies in the adsorption properties revealed a gas response mechanism in oxide nanocrystals more complex than the size dependence alone. In particular, the nanocrystals surface must be characterized by enhanced transducing properties for obtaining relevant gas responses.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp804916g</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis</subject><ispartof>Journal of physical chemistry. C, 2008-12, Vol.112 (49), p.19540-19546</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp804916g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp804916g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Epifani, Mauro</creatorcontrib><creatorcontrib>Prades, Joan Daniel</creatorcontrib><creatorcontrib>Comini, Elisabetta</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Avella, Manuel</creatorcontrib><creatorcontrib>Siciliano, Pietro</creatorcontrib><creatorcontrib>Faglia, Guido</creatorcontrib><creatorcontrib>Cirera, Albert</creatorcontrib><creatorcontrib>Scotti, Roberto</creatorcontrib><creatorcontrib>Morazzoni, Franca</creatorcontrib><creatorcontrib>Morante, Joan Ramon</creatorcontrib><title>The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>SnO2 nanocrystals were prepared by injecting a hydrolyzed methanol solution of SnCl4 into a tetradecene solution of dodecylamine. The resulting materials were annealed at 500 °C, providing 6−8 nm nanocrystals. The latter were used for fabricating NO2 gas sensing devices, which displayed remarkable electrical responses to as low as 100 ppb NO2 concentration. The nanocrystals were characterized by conductometric measurements, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and cathodoluminescence (CL) spectroscopy. The results, interpreted by means of molecular modeling in the frame of the density functional theory (DFT), indicated that the nanocrystals contain topographically well-defined surface oxygen vacancies. The chemisorption properties of these vacancies, studied by DFT modeling of the NO2/SnO2 interaction, suggested that the in-plane vacancies facilitate the NO2 adsorption at low operating temperatures, while the bridging vacancies, generated by heat treatment at 500 °C, enhance the charge transfer from the surface to the adsorbate. The behavior of the oxygen vacancies in the adsorption properties revealed a gas response mechanism in oxide nanocrystals more complex than the size dependence alone. In particular, the nanocrystals surface must be characterized by enhanced transducing properties for obtaining relevant gas responses.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEUhBujiYge_Ae9eFxtt1u6PRoioCFAZJXES_O22-Ku2CXtksC_twTDaV4y37xMBqF7Sh4pSelTs81JJulgfYF6VLI0ERnnl-c7E9foJoSGEM4IZT20Kr4Nfm83BrcWL3fegjZ4vj-sjcOfoMHp2gRcO9xFbjZP8dK4ULs1Xvh2a3x3dI9JF60ZuFb7Q-hgE27RlY1i7v61jz5GL8Vwkkzn49fh8zSBNJddkmalyHRegRApr4QllvGqIiXIWFjnpQDJjCXS2IwPQFhNGRUlUGsMYXIgWB8lp7916MxebX39C_6gwP-o6AquisVSFaO3LzYZ52oV-YcTDzqopt15F9spStRxPXVej_0BuSlhAA</recordid><startdate>20081211</startdate><enddate>20081211</enddate><creator>Epifani, Mauro</creator><creator>Prades, Joan Daniel</creator><creator>Comini, Elisabetta</creator><creator>Pellicer, Eva</creator><creator>Avella, Manuel</creator><creator>Siciliano, Pietro</creator><creator>Faglia, Guido</creator><creator>Cirera, Albert</creator><creator>Scotti, Roberto</creator><creator>Morazzoni, Franca</creator><creator>Morante, Joan Ramon</creator><general>American Chemical Society</general><scope>BSCLL</scope></search><sort><creationdate>20081211</creationdate><title>The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals</title><author>Epifani, Mauro ; Prades, Joan Daniel ; Comini, Elisabetta ; Pellicer, Eva ; Avella, Manuel ; Siciliano, Pietro ; Faglia, Guido ; Cirera, Albert ; Scotti, Roberto ; Morazzoni, Franca ; Morante, Joan Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-24b74c8da7725d7f0f35dd0ba9193c8b7a93ef09ef456a7fc1317ba1fee039673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epifani, Mauro</creatorcontrib><creatorcontrib>Prades, Joan Daniel</creatorcontrib><creatorcontrib>Comini, Elisabetta</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Avella, Manuel</creatorcontrib><creatorcontrib>Siciliano, Pietro</creatorcontrib><creatorcontrib>Faglia, Guido</creatorcontrib><creatorcontrib>Cirera, Albert</creatorcontrib><creatorcontrib>Scotti, Roberto</creatorcontrib><creatorcontrib>Morazzoni, Franca</creatorcontrib><creatorcontrib>Morante, Joan Ramon</creatorcontrib><collection>Istex</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epifani, Mauro</au><au>Prades, Joan Daniel</au><au>Comini, Elisabetta</au><au>Pellicer, Eva</au><au>Avella, Manuel</au><au>Siciliano, Pietro</au><au>Faglia, Guido</au><au>Cirera, Albert</au><au>Scotti, Roberto</au><au>Morazzoni, Franca</au><au>Morante, Joan Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2008-12-11</date><risdate>2008</risdate><volume>112</volume><issue>49</issue><spage>19540</spage><epage>19546</epage><pages>19540-19546</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>SnO2 nanocrystals were prepared by injecting a hydrolyzed methanol solution of SnCl4 into a tetradecene solution of dodecylamine. The resulting materials were annealed at 500 °C, providing 6−8 nm nanocrystals. The latter were used for fabricating NO2 gas sensing devices, which displayed remarkable electrical responses to as low as 100 ppb NO2 concentration. The nanocrystals were characterized by conductometric measurements, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and cathodoluminescence (CL) spectroscopy. The results, interpreted by means of molecular modeling in the frame of the density functional theory (DFT), indicated that the nanocrystals contain topographically well-defined surface oxygen vacancies. The chemisorption properties of these vacancies, studied by DFT modeling of the NO2/SnO2 interaction, suggested that the in-plane vacancies facilitate the NO2 adsorption at low operating temperatures, while the bridging vacancies, generated by heat treatment at 500 °C, enhance the charge transfer from the surface to the adsorbate. The behavior of the oxygen vacancies in the adsorption properties revealed a gas response mechanism in oxide nanocrystals more complex than the size dependence alone. In particular, the nanocrystals surface must be characterized by enhanced transducing properties for obtaining relevant gas responses.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp804916g</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2008-12, Vol.112 (49), p.19540-19546
issn 1932-7447
1932-7455
language eng
recordid cdi_istex_primary_ark_67375_TPS_TFJZ3HG8_W
source American Chemical Society Journals
subjects C: Surfaces, Interfaces, Catalysis
title The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Surface%20Oxygen%20Vacancies%20in%20the%20NO2%20Sensing%20Properties%20of%20SnO2%20Nanocrystals&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Epifani,%20Mauro&rft.date=2008-12-11&rft.volume=112&rft.issue=49&rft.spage=19540&rft.epage=19546&rft.pages=19540-19546&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp804916g&rft_dat=%3Cistex_acs_j%3Eark_67375_TPS_TFJZ3HG8_W%3C/istex_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true