Antimony Oxide-Modified Vanadia-Based CatalystsPhysical Characterization and Catalytic Properties

Antimony-modified vanadia-on-titania catalysts were prepared for the selective oxidation of o-xylene to phthalic anhydride by ball milling of powder mixtures followed by calcination. A binary Sb2O3−V2O5 system was also prepared for comparison purposes. The resulting materials were physically charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2001-11, Vol.105 (44), p.10772-10783
Hauptverfasser: Spengler, J., Anderle, F., Bosch, E., Grasselli, R. K., Pillep, B., Behrens, P., Lapina, O. B., Shubin, A. A., Eberle, H.-J., Knözinger, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antimony-modified vanadia-on-titania catalysts were prepared for the selective oxidation of o-xylene to phthalic anhydride by ball milling of powder mixtures followed by calcination. A binary Sb2O3−V2O5 system was also prepared for comparison purposes. The resulting materials were physically characterized by surface area measurements, X-ray diffraction analysis (XRD), laser Raman spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, electron spin resonance (ESR), magnetic susceptibility determination, and 15V solid-state NMR. The catalytic performance of the TiO2-supported materials was tested for o-xylene oxidation. After calcination of the Sb2O3−V2O5 binary mixture at 673 K, Sb3+ is almost quantitatively oxidized to Sb5+, while both V3+ and V4+ are detected. V3+ and some V4+ are most likely located in a nonstoichiometric VSbO4-like structure, while the majority of V4+ preferentially concentrates within shear domains in oxygen-deficient V2O5 - x particles. In the titania-supported catalyst system, both Sb2O3 and V2O5 spread on the anatase surface. Sb3+ is oxidized to Sb5+, and V3+, V4+, and V5+ are detected. VSbO4-like structures are not observed. The presence of antimony leads to the formation of presumably V3+−O−V5+ redox couples. The paramagnetic centersin contrast to the binary mixtureare largely isolated. Antimony preferentially migrates to the surface and appears to exhibit a dual function catalytically. It is inferred from the experimental data that the addition of antimony leads to site isolation and to a reduction of surface acidity. We suggest that V−O−V−O−V domains or clusters are interrupted by incorporation of Sb to form V−O−Sb−O−V species. As a consequence of this site isolation and a reduction of surface acidity, overoxidation of o-xylene is reduced. These two effects are therefore most probably responsible for the improved selectivity of the ternary catalyst system over the binary one toward phthalic anhydride.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp012228u