Orientation Dependence in C60 Surface-Impact Collisions
The effect of molecular orientation on collisions between C60(buckminsterfullerene) and a solid surface was studied by carrying out simulations based on the Tersoff potential for the C−C interaction and modeling the surface by a structureless wall. Simulations were run with initial molecular kinetic...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2002-02, Vol.106 (6), p.893-896 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 6 |
container_start_page | 893 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 106 |
creator | Tang, Qi-Heng Runge, Keith Cheng, Hai-Ping Harris, Frank E |
description | The effect of molecular orientation on collisions between C60(buckminsterfullerene) and a solid surface was studied by carrying out simulations based on the Tersoff potential for the C−C interaction and modeling the surface by a structureless wall. Simulations were run with initial molecular kinetic energies of 100 and 300 eV, at impact angles relative to normal incidence of 10°, 20°, and 30°. The simple nature of the simulations permitted the examination of thousands of trajectories with random initial C60 orientations, in contrast to all previous studies, which have been highly limited in this respect. The data obtained included information about the redistribution of energy and angular momentum and about collisional fragmentation. The results are strongly dependent upon the initial molecular orientation and lead to wide distributions of the quantities studied. Since structured surfaces are expected to intensify the orientation dependence, it is concluded that one must use a substantial ensemble of trajectories to obtain meaningful average behavior. The ensemble averages are qualitatively similar to relevant experimental results and thereby support the conclusions advanced. |
doi_str_mv | 10.1021/jp012951k |
format | Article |
fullrecord | <record><control><sourceid>acs_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_TPS_J9LS3286_G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b84837747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a136t-d783899f700c0886dbce90bd482a754a83d9f830b32ce5a9bd3cfa23e84df6c83</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKcH_0EvHqNf8jVpcpSqc1KY0HkOaZJCu64rTQf67-2YeHrfw8PLy0PIPYNHBpw9tQMwrgXbXZAFExyo4Exczh2UpkKiviY3MbYAwJCnC5Jtxib0k52aQ5-8hCH0PvQuJE2f5BKS8jjW1gW63g_WTUl-6Lomzmi8JVe17WK4-8sl-Xp73ebvtNis1vlzQS1DOVGfKVRa1xmAA6Wkr1zQUPlUcZuJ1Cr0ulYIFXIXhNWVR1dbjkGlvpZO4ZLQ824Tp_BthrHZ2_HH2HFnZIaZMNvP0nzookSupFnN_MOZty6a9nAc-_mdYWBOdsy_HfwFxaVVhw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orientation Dependence in C60 Surface-Impact Collisions</title><source>American Chemical Society Journals</source><creator>Tang, Qi-Heng ; Runge, Keith ; Cheng, Hai-Ping ; Harris, Frank E</creator><creatorcontrib>Tang, Qi-Heng ; Runge, Keith ; Cheng, Hai-Ping ; Harris, Frank E</creatorcontrib><description>The effect of molecular orientation on collisions between C60(buckminsterfullerene) and a solid surface was studied by carrying out simulations based on the Tersoff potential for the C−C interaction and modeling the surface by a structureless wall. Simulations were run with initial molecular kinetic energies of 100 and 300 eV, at impact angles relative to normal incidence of 10°, 20°, and 30°. The simple nature of the simulations permitted the examination of thousands of trajectories with random initial C60 orientations, in contrast to all previous studies, which have been highly limited in this respect. The data obtained included information about the redistribution of energy and angular momentum and about collisional fragmentation. The results are strongly dependent upon the initial molecular orientation and lead to wide distributions of the quantities studied. Since structured surfaces are expected to intensify the orientation dependence, it is concluded that one must use a substantial ensemble of trajectories to obtain meaningful average behavior. The ensemble averages are qualitatively similar to relevant experimental results and thereby support the conclusions advanced.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp012951k</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2002-02, Vol.106 (6), p.893-896</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp012951k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp012951k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Tang, Qi-Heng</creatorcontrib><creatorcontrib>Runge, Keith</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Harris, Frank E</creatorcontrib><title>Orientation Dependence in C60 Surface-Impact Collisions</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The effect of molecular orientation on collisions between C60(buckminsterfullerene) and a solid surface was studied by carrying out simulations based on the Tersoff potential for the C−C interaction and modeling the surface by a structureless wall. Simulations were run with initial molecular kinetic energies of 100 and 300 eV, at impact angles relative to normal incidence of 10°, 20°, and 30°. The simple nature of the simulations permitted the examination of thousands of trajectories with random initial C60 orientations, in contrast to all previous studies, which have been highly limited in this respect. The data obtained included information about the redistribution of energy and angular momentum and about collisional fragmentation. The results are strongly dependent upon the initial molecular orientation and lead to wide distributions of the quantities studied. Since structured surfaces are expected to intensify the orientation dependence, it is concluded that one must use a substantial ensemble of trajectories to obtain meaningful average behavior. The ensemble averages are qualitatively similar to relevant experimental results and thereby support the conclusions advanced.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLwzAYhoMoOKcH_0EvHqNf8jVpcpSqc1KY0HkOaZJCu64rTQf67-2YeHrfw8PLy0PIPYNHBpw9tQMwrgXbXZAFExyo4Exczh2UpkKiviY3MbYAwJCnC5Jtxib0k52aQ5-8hCH0PvQuJE2f5BKS8jjW1gW63g_WTUl-6Lomzmi8JVe17WK4-8sl-Xp73ebvtNis1vlzQS1DOVGfKVRa1xmAA6Wkr1zQUPlUcZuJ1Cr0ulYIFXIXhNWVR1dbjkGlvpZO4ZLQ824Tp_BthrHZ2_HH2HFnZIaZMNvP0nzookSupFnN_MOZty6a9nAc-_mdYWBOdsy_HfwFxaVVhw</recordid><startdate>20020214</startdate><enddate>20020214</enddate><creator>Tang, Qi-Heng</creator><creator>Runge, Keith</creator><creator>Cheng, Hai-Ping</creator><creator>Harris, Frank E</creator><general>American Chemical Society</general><scope>BSCLL</scope></search><sort><creationdate>20020214</creationdate><title>Orientation Dependence in C60 Surface-Impact Collisions</title><author>Tang, Qi-Heng ; Runge, Keith ; Cheng, Hai-Ping ; Harris, Frank E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a136t-d783899f700c0886dbce90bd482a754a83d9f830b32ce5a9bd3cfa23e84df6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Qi-Heng</creatorcontrib><creatorcontrib>Runge, Keith</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Harris, Frank E</creatorcontrib><collection>Istex</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Qi-Heng</au><au>Runge, Keith</au><au>Cheng, Hai-Ping</au><au>Harris, Frank E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orientation Dependence in C60 Surface-Impact Collisions</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2002-02-14</date><risdate>2002</risdate><volume>106</volume><issue>6</issue><spage>893</spage><epage>896</epage><pages>893-896</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The effect of molecular orientation on collisions between C60(buckminsterfullerene) and a solid surface was studied by carrying out simulations based on the Tersoff potential for the C−C interaction and modeling the surface by a structureless wall. Simulations were run with initial molecular kinetic energies of 100 and 300 eV, at impact angles relative to normal incidence of 10°, 20°, and 30°. The simple nature of the simulations permitted the examination of thousands of trajectories with random initial C60 orientations, in contrast to all previous studies, which have been highly limited in this respect. The data obtained included information about the redistribution of energy and angular momentum and about collisional fragmentation. The results are strongly dependent upon the initial molecular orientation and lead to wide distributions of the quantities studied. Since structured surfaces are expected to intensify the orientation dependence, it is concluded that one must use a substantial ensemble of trajectories to obtain meaningful average behavior. The ensemble averages are qualitatively similar to relevant experimental results and thereby support the conclusions advanced.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp012951k</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2002-02, Vol.106 (6), p.893-896 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_istex_primary_ark_67375_TPS_J9LS3286_G |
source | American Chemical Society Journals |
title | Orientation Dependence in C60 Surface-Impact Collisions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orientation%20Dependence%20in%20C60%20Surface-Impact%20Collisions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Tang,%20Qi-Heng&rft.date=2002-02-14&rft.volume=106&rft.issue=6&rft.spage=893&rft.epage=896&rft.pages=893-896&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp012951k&rft_dat=%3Cacs_istex%3Eb84837747%3C/acs_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |