Theoretical Study of OH−O2−Isoprene Peroxy Radicals

Ab initio molecular orbital calculations have been performed to investigate the structures and energetics of the peroxy radicals arising from the OH-initiated oxidation of isoprene. Geometry optimizations of the OH−O2−isoprene peroxy radicals were performed using density functional theory at the B3L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2001-01, Vol.105 (2), p.471-477
Hauptverfasser: Lei, Wenfang, Zhang, Renyi, McGivern, W. Sean, Derecskei-Kovacs, Agnes, North, Simon W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 2
container_start_page 471
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 105
creator Lei, Wenfang
Zhang, Renyi
McGivern, W. Sean
Derecskei-Kovacs, Agnes
North, Simon W
description Ab initio molecular orbital calculations have been performed to investigate the structures and energetics of the peroxy radicals arising from the OH-initiated oxidation of isoprene. Geometry optimizations of the OH−O2−isoprene peroxy radicals were performed using density functional theory at the B3LYP/6-31G** level, and individual energies were computed using second-order Møller−Plesset perturbation theory (MP2) and coupled-cluster theory with single and double excitations including perturbative corrections for the triple excitations (CCSD(T)). At the CCSD(T)/6-31G* level of theory the zero-point-corrected OH−O2−isoprene adduct radical energies are 47−53 kcal mol-1 more stable than the separated OH, O2, and isoprene reactants. In addition, we find no evidence for an energetic barrier to O2 addition and have calculated rate constants for the O2 addition step using canonical variational transition state theory (CVTST) based on Morse potentials to describe the reaction coordinate. These results provide the isomeric branching between the six isoprene−OH−O2 adduct radicals.
doi_str_mv 10.1021/jp0027039
format Article
fullrecord <record><control><sourceid>istex_acs_j</sourceid><recordid>TN_cdi_istex_primary_ark_67375_TPS_G93ZPBQH_P</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_G93ZPBQH_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-a202t-aa25f7c6e511e22c44959adc2a74d38549cb65eca7d7490bdda571b3b54b3653</originalsourceid><addsrcrecordid>eNo9kL9OwzAYxC0EEqUw8AZZGAOf_3xxPUIFTaVKDTQTi-XYjkiAJnJSqXkDZh6RJyFVEcvdDT-dTkfINYVbCoze1S0Ak8DVCZlQZBAjo3g6ZpipGBOuzslF19UAQDkTEyLzN98E31fWfESbfueGqCmjdfrz9b1moyy7pg1-66PMh2Y_RC_GHdDukpyVo_mrP5-S_Okxn6fxar1Yzu9XsWHA-tgYhqW0iUdKPWNWCIXKOMuMFI7PUChbJOitkU4KBYVzBiUteIGi4AnyKYmPtVXX-71uQ_VpwqBNeNeJ5BJ1nm30QvHX7OE51dnI3xx5YztdN7uwHcdpCvpwjv4_h_8C5MdW0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical Study of OH−O2−Isoprene Peroxy Radicals</title><source>ACS Publications</source><creator>Lei, Wenfang ; Zhang, Renyi ; McGivern, W. Sean ; Derecskei-Kovacs, Agnes ; North, Simon W</creator><creatorcontrib>Lei, Wenfang ; Zhang, Renyi ; McGivern, W. Sean ; Derecskei-Kovacs, Agnes ; North, Simon W</creatorcontrib><description>Ab initio molecular orbital calculations have been performed to investigate the structures and energetics of the peroxy radicals arising from the OH-initiated oxidation of isoprene. Geometry optimizations of the OH−O2−isoprene peroxy radicals were performed using density functional theory at the B3LYP/6-31G** level, and individual energies were computed using second-order Møller−Plesset perturbation theory (MP2) and coupled-cluster theory with single and double excitations including perturbative corrections for the triple excitations (CCSD(T)). At the CCSD(T)/6-31G* level of theory the zero-point-corrected OH−O2−isoprene adduct radical energies are 47−53 kcal mol-1 more stable than the separated OH, O2, and isoprene reactants. In addition, we find no evidence for an energetic barrier to O2 addition and have calculated rate constants for the O2 addition step using canonical variational transition state theory (CVTST) based on Morse potentials to describe the reaction coordinate. These results provide the isomeric branching between the six isoprene−OH−O2 adduct radicals.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp0027039</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2001-01, Vol.105 (2), p.471-477</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0027039$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0027039$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Lei, Wenfang</creatorcontrib><creatorcontrib>Zhang, Renyi</creatorcontrib><creatorcontrib>McGivern, W. Sean</creatorcontrib><creatorcontrib>Derecskei-Kovacs, Agnes</creatorcontrib><creatorcontrib>North, Simon W</creatorcontrib><title>Theoretical Study of OH−O2−Isoprene Peroxy Radicals</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Ab initio molecular orbital calculations have been performed to investigate the structures and energetics of the peroxy radicals arising from the OH-initiated oxidation of isoprene. Geometry optimizations of the OH−O2−isoprene peroxy radicals were performed using density functional theory at the B3LYP/6-31G** level, and individual energies were computed using second-order Møller−Plesset perturbation theory (MP2) and coupled-cluster theory with single and double excitations including perturbative corrections for the triple excitations (CCSD(T)). At the CCSD(T)/6-31G* level of theory the zero-point-corrected OH−O2−isoprene adduct radical energies are 47−53 kcal mol-1 more stable than the separated OH, O2, and isoprene reactants. In addition, we find no evidence for an energetic barrier to O2 addition and have calculated rate constants for the O2 addition step using canonical variational transition state theory (CVTST) based on Morse potentials to describe the reaction coordinate. These results provide the isomeric branching between the six isoprene−OH−O2 adduct radicals.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kL9OwzAYxC0EEqUw8AZZGAOf_3xxPUIFTaVKDTQTi-XYjkiAJnJSqXkDZh6RJyFVEcvdDT-dTkfINYVbCoze1S0Ak8DVCZlQZBAjo3g6ZpipGBOuzslF19UAQDkTEyLzN98E31fWfESbfueGqCmjdfrz9b1moyy7pg1-66PMh2Y_RC_GHdDukpyVo_mrP5-S_Okxn6fxar1Yzu9XsWHA-tgYhqW0iUdKPWNWCIXKOMuMFI7PUChbJOitkU4KBYVzBiUteIGi4AnyKYmPtVXX-71uQ_VpwqBNeNeJ5BJ1nm30QvHX7OE51dnI3xx5YztdN7uwHcdpCvpwjv4_h_8C5MdW0g</recordid><startdate>20010118</startdate><enddate>20010118</enddate><creator>Lei, Wenfang</creator><creator>Zhang, Renyi</creator><creator>McGivern, W. Sean</creator><creator>Derecskei-Kovacs, Agnes</creator><creator>North, Simon W</creator><general>American Chemical Society</general><scope>BSCLL</scope></search><sort><creationdate>20010118</creationdate><title>Theoretical Study of OH−O2−Isoprene Peroxy Radicals</title><author>Lei, Wenfang ; Zhang, Renyi ; McGivern, W. Sean ; Derecskei-Kovacs, Agnes ; North, Simon W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a202t-aa25f7c6e511e22c44959adc2a74d38549cb65eca7d7490bdda571b3b54b3653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Wenfang</creatorcontrib><creatorcontrib>Zhang, Renyi</creatorcontrib><creatorcontrib>McGivern, W. Sean</creatorcontrib><creatorcontrib>Derecskei-Kovacs, Agnes</creatorcontrib><creatorcontrib>North, Simon W</creatorcontrib><collection>Istex</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Wenfang</au><au>Zhang, Renyi</au><au>McGivern, W. Sean</au><au>Derecskei-Kovacs, Agnes</au><au>North, Simon W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study of OH−O2−Isoprene Peroxy Radicals</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2001-01-18</date><risdate>2001</risdate><volume>105</volume><issue>2</issue><spage>471</spage><epage>477</epage><pages>471-477</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Ab initio molecular orbital calculations have been performed to investigate the structures and energetics of the peroxy radicals arising from the OH-initiated oxidation of isoprene. Geometry optimizations of the OH−O2−isoprene peroxy radicals were performed using density functional theory at the B3LYP/6-31G** level, and individual energies were computed using second-order Møller−Plesset perturbation theory (MP2) and coupled-cluster theory with single and double excitations including perturbative corrections for the triple excitations (CCSD(T)). At the CCSD(T)/6-31G* level of theory the zero-point-corrected OH−O2−isoprene adduct radical energies are 47−53 kcal mol-1 more stable than the separated OH, O2, and isoprene reactants. In addition, we find no evidence for an energetic barrier to O2 addition and have calculated rate constants for the O2 addition step using canonical variational transition state theory (CVTST) based on Morse potentials to describe the reaction coordinate. These results provide the isomeric branching between the six isoprene−OH−O2 adduct radicals.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp0027039</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2001-01, Vol.105 (2), p.471-477
issn 1089-5639
1520-5215
language eng
recordid cdi_istex_primary_ark_67375_TPS_G93ZPBQH_P
source ACS Publications
title Theoretical Study of OH−O2−Isoprene Peroxy Radicals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20of%20OH%E2%88%92O2%E2%88%92Isoprene%20Peroxy%20Radicals&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Lei,%20Wenfang&rft.date=2001-01-18&rft.volume=105&rft.issue=2&rft.spage=471&rft.epage=477&rft.pages=471-477&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp0027039&rft_dat=%3Cistex_acs_j%3Eark_67375_TPS_G93ZPBQH_P%3C/istex_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true