Laser Flash Photolysis Studies of Radical−Radical Reaction Kinetics:  The HO2 + BrO Reaction

Laser flash photolysis of Cl2/CH3OH/O2/Br2/O3/N2 mixtures at 308 nm has been coupled with simultaneous time-resolved detection of HO2 (by infrared tunable diode laser absorption spectroscopy) and BrO (by ultraviolet absorption spectroscopy) to investigate the kinetics of the important stratospheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1998-08, Vol.102 (33), p.6651-6658
Hauptverfasser: Cronkhite, J. M, Stickel, R. E, Nicovich, J. M, Wine, P. H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6658
container_issue 33
container_start_page 6651
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 102
creator Cronkhite, J. M
Stickel, R. E
Nicovich, J. M
Wine, P. H
description Laser flash photolysis of Cl2/CH3OH/O2/Br2/O3/N2 mixtures at 308 nm has been coupled with simultaneous time-resolved detection of HO2 (by infrared tunable diode laser absorption spectroscopy) and BrO (by ultraviolet absorption spectroscopy) to investigate the kinetics of the important stratospheric reaction HO2 + BrO → products at 296 ± 3 K in N2 buffer gas at pressures of 12 and 25 Torr. All experiments were performed under near pseudo-first-order conditions with HO2 in excess over BrO. The HO2 + BrO rate coefficient is found to be k 1 = (2.0 ± 0.6) × 10-11 cm3 molecule-1 s-1, with the primary source of uncertainty being knowledge of the infrared line strength(s) required to convert measured HO2 absorbances to absolute concentrations. The rate coefficient for the reaction HO2 + HO2 → H2O2 + O2 derived based on infrared absorption measurements of the HO2 concentration is consistent with the currently accepted value. The results reported in this study are compared with other recent studies of HO2 + BrO kinetics, and their implications for our understanding of stratospheric chemistry are discussed.
doi_str_mv 10.1021/jp981456u
format Article
fullrecord <record><control><sourceid>istex_acs_j</sourceid><recordid>TN_cdi_istex_primary_ark_67375_TPS_6C1J31V1_K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_6C1J31V1_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-7a9040cb91f410068ed6f279fe1d2238620f669fe289bb8347eb33f19c5db2c63</originalsourceid><addsrcrecordid>eNo9kMFOAjEYhBujiYgefINePJnV_u1ut_WmBEQhgQB6rd1uG4orS7ZLIjePevUReRLXQDjNTPJlMhmELoHcAKFwu1hJAXHC10eoBQklUUIhOW48ETJKOJOn6CyEBSEEGI1b6G2og61wr9Bhjsfzsi6LTfABT-t17m3ApcMTnXuji-33797hidWm9uUSD_zS1t6Eu-3XD57NLe6PKL7GD9XowJyjE6eLYC_22kYvve6s04-Go8enzv0w0lSkdZRqSWJiMgkuBkK4sDl3NJXOQk4pE5wSx3kTqZBZJlic2owxB9IkeUYNZ20U7Xp9qO2nWlX-Q1cbpat3xVOWJmo2niregWcGr6AGDX-147UJalGuq2WzTgFR_zeqw43sD8wtZJk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Laser Flash Photolysis Studies of Radical−Radical Reaction Kinetics:  The HO2 + BrO Reaction</title><source>ACS Publications</source><creator>Cronkhite, J. M ; Stickel, R. E ; Nicovich, J. M ; Wine, P. H</creator><creatorcontrib>Cronkhite, J. M ; Stickel, R. E ; Nicovich, J. M ; Wine, P. H</creatorcontrib><description>Laser flash photolysis of Cl2/CH3OH/O2/Br2/O3/N2 mixtures at 308 nm has been coupled with simultaneous time-resolved detection of HO2 (by infrared tunable diode laser absorption spectroscopy) and BrO (by ultraviolet absorption spectroscopy) to investigate the kinetics of the important stratospheric reaction HO2 + BrO → products at 296 ± 3 K in N2 buffer gas at pressures of 12 and 25 Torr. All experiments were performed under near pseudo-first-order conditions with HO2 in excess over BrO. The HO2 + BrO rate coefficient is found to be k 1 = (2.0 ± 0.6) × 10-11 cm3 molecule-1 s-1, with the primary source of uncertainty being knowledge of the infrared line strength(s) required to convert measured HO2 absorbances to absolute concentrations. The rate coefficient for the reaction HO2 + HO2 → H2O2 + O2 derived based on infrared absorption measurements of the HO2 concentration is consistent with the currently accepted value. The results reported in this study are compared with other recent studies of HO2 + BrO kinetics, and their implications for our understanding of stratospheric chemistry are discussed.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp981456u</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 1998-08, Vol.102 (33), p.6651-6658</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp981456u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp981456u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Cronkhite, J. M</creatorcontrib><creatorcontrib>Stickel, R. E</creatorcontrib><creatorcontrib>Nicovich, J. M</creatorcontrib><creatorcontrib>Wine, P. H</creatorcontrib><title>Laser Flash Photolysis Studies of Radical−Radical Reaction Kinetics:  The HO2 + BrO Reaction</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Laser flash photolysis of Cl2/CH3OH/O2/Br2/O3/N2 mixtures at 308 nm has been coupled with simultaneous time-resolved detection of HO2 (by infrared tunable diode laser absorption spectroscopy) and BrO (by ultraviolet absorption spectroscopy) to investigate the kinetics of the important stratospheric reaction HO2 + BrO → products at 296 ± 3 K in N2 buffer gas at pressures of 12 and 25 Torr. All experiments were performed under near pseudo-first-order conditions with HO2 in excess over BrO. The HO2 + BrO rate coefficient is found to be k 1 = (2.0 ± 0.6) × 10-11 cm3 molecule-1 s-1, with the primary source of uncertainty being knowledge of the infrared line strength(s) required to convert measured HO2 absorbances to absolute concentrations. The rate coefficient for the reaction HO2 + HO2 → H2O2 + O2 derived based on infrared absorption measurements of the HO2 concentration is consistent with the currently accepted value. The results reported in this study are compared with other recent studies of HO2 + BrO kinetics, and their implications for our understanding of stratospheric chemistry are discussed.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEYhBujiYgefINePJnV_u1ut_WmBEQhgQB6rd1uG4orS7ZLIjePevUReRLXQDjNTPJlMhmELoHcAKFwu1hJAXHC10eoBQklUUIhOW48ETJKOJOn6CyEBSEEGI1b6G2og61wr9Bhjsfzsi6LTfABT-t17m3ApcMTnXuji-33797hidWm9uUSD_zS1t6Eu-3XD57NLe6PKL7GD9XowJyjE6eLYC_22kYvve6s04-Go8enzv0w0lSkdZRqSWJiMgkuBkK4sDl3NJXOQk4pE5wSx3kTqZBZJlic2owxB9IkeUYNZ20U7Xp9qO2nWlX-Q1cbpat3xVOWJmo2niregWcGr6AGDX-147UJalGuq2WzTgFR_zeqw43sD8wtZJk</recordid><startdate>19980813</startdate><enddate>19980813</enddate><creator>Cronkhite, J. M</creator><creator>Stickel, R. E</creator><creator>Nicovich, J. M</creator><creator>Wine, P. H</creator><general>American Chemical Society</general><scope>BSCLL</scope></search><sort><creationdate>19980813</creationdate><title>Laser Flash Photolysis Studies of Radical−Radical Reaction Kinetics:  The HO2 + BrO Reaction</title><author>Cronkhite, J. M ; Stickel, R. E ; Nicovich, J. M ; Wine, P. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-7a9040cb91f410068ed6f279fe1d2238620f669fe289bb8347eb33f19c5db2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cronkhite, J. M</creatorcontrib><creatorcontrib>Stickel, R. E</creatorcontrib><creatorcontrib>Nicovich, J. M</creatorcontrib><creatorcontrib>Wine, P. H</creatorcontrib><collection>Istex</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cronkhite, J. M</au><au>Stickel, R. E</au><au>Nicovich, J. M</au><au>Wine, P. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Flash Photolysis Studies of Radical−Radical Reaction Kinetics:  The HO2 + BrO Reaction</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>1998-08-13</date><risdate>1998</risdate><volume>102</volume><issue>33</issue><spage>6651</spage><epage>6658</epage><pages>6651-6658</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Laser flash photolysis of Cl2/CH3OH/O2/Br2/O3/N2 mixtures at 308 nm has been coupled with simultaneous time-resolved detection of HO2 (by infrared tunable diode laser absorption spectroscopy) and BrO (by ultraviolet absorption spectroscopy) to investigate the kinetics of the important stratospheric reaction HO2 + BrO → products at 296 ± 3 K in N2 buffer gas at pressures of 12 and 25 Torr. All experiments were performed under near pseudo-first-order conditions with HO2 in excess over BrO. The HO2 + BrO rate coefficient is found to be k 1 = (2.0 ± 0.6) × 10-11 cm3 molecule-1 s-1, with the primary source of uncertainty being knowledge of the infrared line strength(s) required to convert measured HO2 absorbances to absolute concentrations. The rate coefficient for the reaction HO2 + HO2 → H2O2 + O2 derived based on infrared absorption measurements of the HO2 concentration is consistent with the currently accepted value. The results reported in this study are compared with other recent studies of HO2 + BrO kinetics, and their implications for our understanding of stratospheric chemistry are discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp981456u</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 1998-08, Vol.102 (33), p.6651-6658
issn 1089-5639
1520-5215
language eng
recordid cdi_istex_primary_ark_67375_TPS_6C1J31V1_K
source ACS Publications
title Laser Flash Photolysis Studies of Radical−Radical Reaction Kinetics:  The HO2 + BrO Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Flash%20Photolysis%20Studies%20of%20Radical%E2%88%92Radical%20Reaction%20Kinetics:%E2%80%89%20The%20HO2%20+%20BrO%20Reaction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Cronkhite,%20J.%20M&rft.date=1998-08-13&rft.volume=102&rft.issue=33&rft.spage=6651&rft.epage=6658&rft.pages=6651-6658&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp981456u&rft_dat=%3Cistex_acs_j%3Eark_67375_TPS_6C1J31V1_K%3C/istex_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true