Infrared Identification of Matrix Isolated H2O·O2

Theoretical studies of the H2O·O2 complex have been carried out over the past decade, but the complex has not previously been experimentally identified. We have assigned IR vibrations from an H2O·O2 complex in an inert rare gas matrix. This identification is based upon theoretical calculations and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-05, Vol.109 (19), p.4274-4279
Hauptverfasser: Cooper, Paul D, Kjaergaard, Henrik G, Langford, Vaughan S, McKinley, Allan J, Quickenden, Terence I, Robinson, Timothy W, Schofield, Daniel P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4279
container_issue 19
container_start_page 4274
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 109
creator Cooper, Paul D
Kjaergaard, Henrik G
Langford, Vaughan S
McKinley, Allan J
Quickenden, Terence I
Robinson, Timothy W
Schofield, Daniel P
description Theoretical studies of the H2O·O2 complex have been carried out over the past decade, but the complex has not previously been experimentally identified. We have assigned IR vibrations from an H2O·O2 complex in an inert rare gas matrix. This identification is based upon theoretical calculations and concentration dependent behavior of absorption bands observed upon codeposition of H2O and O2 in argon matrixes at 11.5 ± 0.5 K. To aid assignment, we have used a harmonically coupled anharmonic oscillator local mode model with an ab initio calculated dipole moment function to calculate the OH-stretching and HOH-bending frequencies and intensities in the complex. The high abundance of H2O and O2 makes the H2O·O2 complex likely to be significant in atmospheric and astrophysical chemistry.
doi_str_mv 10.1021/jp050040v
format Article
fullrecord <record><control><sourceid>acs_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_TPS_3LZT78P3_F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a72655678</sourcerecordid><originalsourceid>FETCH-LOGICAL-a68F-af37e3979a9321004e194d965da3474da23af780d7c5cb9ea41687c43762bb5d3</originalsourceid><addsrcrecordid>eNo9kMFKxDAURYMoOI4u_INuXFZf8pKmWcpgnUKlA3blJrw2KXQc2yGtMn6Ze7_MyoirexeHy-Eyds3hloPgd9s9KAAJHydswZWAWAmuTucOqYlVguacXYzjFgA4CrlgIu_bQMG7KHe-n7q2a2jqhj4a2uiJptAdonwcdjTNxFqU31-luGRnLe1Gf_WXS1ZlD9VqHRflY766L2JK0iymFrVHow0ZFHxW8txIZxLlCKWWjgRSq1NwulFNbTxJnqS6kagTUdfK4ZLFx9lunPzB7kP3RuHTUni1iUatbLV5tli8VDrdoM1m_ubIUzPa7fAe-lnOcrC_v9j_X_AHjXRTMg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infrared Identification of Matrix Isolated H2O·O2</title><source>ACS Publications</source><creator>Cooper, Paul D ; Kjaergaard, Henrik G ; Langford, Vaughan S ; McKinley, Allan J ; Quickenden, Terence I ; Robinson, Timothy W ; Schofield, Daniel P</creator><creatorcontrib>Cooper, Paul D ; Kjaergaard, Henrik G ; Langford, Vaughan S ; McKinley, Allan J ; Quickenden, Terence I ; Robinson, Timothy W ; Schofield, Daniel P</creatorcontrib><description>Theoretical studies of the H2O·O2 complex have been carried out over the past decade, but the complex has not previously been experimentally identified. We have assigned IR vibrations from an H2O·O2 complex in an inert rare gas matrix. This identification is based upon theoretical calculations and concentration dependent behavior of absorption bands observed upon codeposition of H2O and O2 in argon matrixes at 11.5 ± 0.5 K. To aid assignment, we have used a harmonically coupled anharmonic oscillator local mode model with an ab initio calculated dipole moment function to calculate the OH-stretching and HOH-bending frequencies and intensities in the complex. The high abundance of H2O and O2 makes the H2O·O2 complex likely to be significant in atmospheric and astrophysical chemistry.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp050040v</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2005-05, Vol.109 (19), p.4274-4279</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp050040v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp050040v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cooper, Paul D</creatorcontrib><creatorcontrib>Kjaergaard, Henrik G</creatorcontrib><creatorcontrib>Langford, Vaughan S</creatorcontrib><creatorcontrib>McKinley, Allan J</creatorcontrib><creatorcontrib>Quickenden, Terence I</creatorcontrib><creatorcontrib>Robinson, Timothy W</creatorcontrib><creatorcontrib>Schofield, Daniel P</creatorcontrib><title>Infrared Identification of Matrix Isolated H2O·O2</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Theoretical studies of the H2O·O2 complex have been carried out over the past decade, but the complex has not previously been experimentally identified. We have assigned IR vibrations from an H2O·O2 complex in an inert rare gas matrix. This identification is based upon theoretical calculations and concentration dependent behavior of absorption bands observed upon codeposition of H2O and O2 in argon matrixes at 11.5 ± 0.5 K. To aid assignment, we have used a harmonically coupled anharmonic oscillator local mode model with an ab initio calculated dipole moment function to calculate the OH-stretching and HOH-bending frequencies and intensities in the complex. The high abundance of H2O and O2 makes the H2O·O2 complex likely to be significant in atmospheric and astrophysical chemistry.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKxDAURYMoOI4u_INuXFZf8pKmWcpgnUKlA3blJrw2KXQc2yGtMn6Ze7_MyoirexeHy-Eyds3hloPgd9s9KAAJHydswZWAWAmuTucOqYlVguacXYzjFgA4CrlgIu_bQMG7KHe-n7q2a2jqhj4a2uiJptAdonwcdjTNxFqU31-luGRnLe1Gf_WXS1ZlD9VqHRflY766L2JK0iymFrVHow0ZFHxW8txIZxLlCKWWjgRSq1NwulFNbTxJnqS6kagTUdfK4ZLFx9lunPzB7kP3RuHTUni1iUatbLV5tli8VDrdoM1m_ubIUzPa7fAe-lnOcrC_v9j_X_AHjXRTMg</recordid><startdate>20050519</startdate><enddate>20050519</enddate><creator>Cooper, Paul D</creator><creator>Kjaergaard, Henrik G</creator><creator>Langford, Vaughan S</creator><creator>McKinley, Allan J</creator><creator>Quickenden, Terence I</creator><creator>Robinson, Timothy W</creator><creator>Schofield, Daniel P</creator><general>American Chemical Society</general><scope>BSCLL</scope></search><sort><creationdate>20050519</creationdate><title>Infrared Identification of Matrix Isolated H2O·O2</title><author>Cooper, Paul D ; Kjaergaard, Henrik G ; Langford, Vaughan S ; McKinley, Allan J ; Quickenden, Terence I ; Robinson, Timothy W ; Schofield, Daniel P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a68F-af37e3979a9321004e194d965da3474da23af780d7c5cb9ea41687c43762bb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Paul D</creatorcontrib><creatorcontrib>Kjaergaard, Henrik G</creatorcontrib><creatorcontrib>Langford, Vaughan S</creatorcontrib><creatorcontrib>McKinley, Allan J</creatorcontrib><creatorcontrib>Quickenden, Terence I</creatorcontrib><creatorcontrib>Robinson, Timothy W</creatorcontrib><creatorcontrib>Schofield, Daniel P</creatorcontrib><collection>Istex</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Paul D</au><au>Kjaergaard, Henrik G</au><au>Langford, Vaughan S</au><au>McKinley, Allan J</au><au>Quickenden, Terence I</au><au>Robinson, Timothy W</au><au>Schofield, Daniel P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Identification of Matrix Isolated H2O·O2</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2005-05-19</date><risdate>2005</risdate><volume>109</volume><issue>19</issue><spage>4274</spage><epage>4279</epage><pages>4274-4279</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Theoretical studies of the H2O·O2 complex have been carried out over the past decade, but the complex has not previously been experimentally identified. We have assigned IR vibrations from an H2O·O2 complex in an inert rare gas matrix. This identification is based upon theoretical calculations and concentration dependent behavior of absorption bands observed upon codeposition of H2O and O2 in argon matrixes at 11.5 ± 0.5 K. To aid assignment, we have used a harmonically coupled anharmonic oscillator local mode model with an ab initio calculated dipole moment function to calculate the OH-stretching and HOH-bending frequencies and intensities in the complex. The high abundance of H2O and O2 makes the H2O·O2 complex likely to be significant in atmospheric and astrophysical chemistry.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp050040v</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2005-05, Vol.109 (19), p.4274-4279
issn 1089-5639
1520-5215
language eng
recordid cdi_istex_primary_ark_67375_TPS_3LZT78P3_F
source ACS Publications
title Infrared Identification of Matrix Isolated H2O·O2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Identification%20of%20Matrix%20Isolated%20H2O%C2%B7O2&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Cooper,%20Paul%20D&rft.date=2005-05-19&rft.volume=109&rft.issue=19&rft.spage=4274&rft.epage=4279&rft.pages=4274-4279&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp050040v&rft_dat=%3Cacs_istex%3Ea72655678%3C/acs_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true