COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses

This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2013-09, Vol.557
Hauptverfasser: Rathna Kumar, S., Tewes, M., Stalin, C. S., Courbin, F., Asfandiyarov, I., Meylan, G., Eulaers, E., Prabhu, T. P., Magain, P., Van Winckel, H., Ehgamberdiev, Sh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 557
creator Rathna Kumar, S.
Tewes, M.
Stalin, C. S.
Courbin, F.
Asfandiyarov, I.
Meylan, G.
Eulaers, E.
Prabhu, T. P.
Magain, P.
Van Winckel, H.
Ehgamberdiev, Sh
description This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory, and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3 ± 3.3 days (1σ, 2.8% uncertainty), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the velocity dispersion of the lensing galaxy, in combination with deep Hubble Space Telescope imaging.
doi_str_mv 10.1051/0004-6361/201322116
format Article
fullrecord <record><control><sourceid>istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_80W_HJBD7XLD_B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_HJBD7XLD_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1996-52aba7f916565730cf4fe788a82d8a89774b8b86fe6ffe11d903d129e8dfced43</originalsourceid><addsrcrecordid>eNo9jF1LwzAYhYMoWKe_wJv-gbi8SZsPb2Tr5lbpKPiB3oW0TWa0a6Upov_eguLNOTych4PQJZArICnMCSEJ5ozDnBJglALwIxRBwigmIuHHKPo3TtFZCG8TUpAsQjdZ-bArN_eLvLiOx1cbT3zo237va9PGu7LzYz_4bh_3Lp6sz3w0o--7aStsF2w4RyfOtMFe_PUMPd2uH7MtLspNni0KXINSHKfUVEY4BTzlqWCkdomzQkojaTOFEiKpZCW5s9w5C9AowhqgysrG1bZJ2Azh318fRvulPwZ_MMO3NsO75oKJVEvyrLd3y5V4KVZ6yX4AmDlM8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rathna Kumar, S. ; Tewes, M. ; Stalin, C. S. ; Courbin, F. ; Asfandiyarov, I. ; Meylan, G. ; Eulaers, E. ; Prabhu, T. P. ; Magain, P. ; Van Winckel, H. ; Ehgamberdiev, Sh</creator><creatorcontrib>Rathna Kumar, S. ; Tewes, M. ; Stalin, C. S. ; Courbin, F. ; Asfandiyarov, I. ; Meylan, G. ; Eulaers, E. ; Prabhu, T. P. ; Magain, P. ; Van Winckel, H. ; Ehgamberdiev, Sh</creatorcontrib><description>This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory, and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3 ± 3.3 days (1σ, 2.8% uncertainty), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the velocity dispersion of the lensing galaxy, in combination with deep Hubble Space Telescope imaging.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201322116</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>cosmological parameters ; gravitational lensing: strong ; quasars: individual: SDSS J1001+5027</subject><ispartof>Astronomy and astrophysics (Berlin), 2013-09, Vol.557</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1996-52aba7f916565730cf4fe788a82d8a89774b8b86fe6ffe11d903d129e8dfced43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rathna Kumar, S.</creatorcontrib><creatorcontrib>Tewes, M.</creatorcontrib><creatorcontrib>Stalin, C. S.</creatorcontrib><creatorcontrib>Courbin, F.</creatorcontrib><creatorcontrib>Asfandiyarov, I.</creatorcontrib><creatorcontrib>Meylan, G.</creatorcontrib><creatorcontrib>Eulaers, E.</creatorcontrib><creatorcontrib>Prabhu, T. P.</creatorcontrib><creatorcontrib>Magain, P.</creatorcontrib><creatorcontrib>Van Winckel, H.</creatorcontrib><creatorcontrib>Ehgamberdiev, Sh</creatorcontrib><title>COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses</title><title>Astronomy and astrophysics (Berlin)</title><description>This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory, and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3 ± 3.3 days (1σ, 2.8% uncertainty), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the velocity dispersion of the lensing galaxy, in combination with deep Hubble Space Telescope imaging.</description><subject>cosmological parameters</subject><subject>gravitational lensing: strong</subject><subject>quasars: individual: SDSS J1001+5027</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9jF1LwzAYhYMoWKe_wJv-gbi8SZsPb2Tr5lbpKPiB3oW0TWa0a6Upov_eguLNOTych4PQJZArICnMCSEJ5ozDnBJglALwIxRBwigmIuHHKPo3TtFZCG8TUpAsQjdZ-bArN_eLvLiOx1cbT3zo237va9PGu7LzYz_4bh_3Lp6sz3w0o--7aStsF2w4RyfOtMFe_PUMPd2uH7MtLspNni0KXINSHKfUVEY4BTzlqWCkdomzQkojaTOFEiKpZCW5s9w5C9AowhqgysrG1bZJ2Azh318fRvulPwZ_MMO3NsO75oKJVEvyrLd3y5V4KVZ6yX4AmDlM8Q</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Rathna Kumar, S.</creator><creator>Tewes, M.</creator><creator>Stalin, C. S.</creator><creator>Courbin, F.</creator><creator>Asfandiyarov, I.</creator><creator>Meylan, G.</creator><creator>Eulaers, E.</creator><creator>Prabhu, T. P.</creator><creator>Magain, P.</creator><creator>Van Winckel, H.</creator><creator>Ehgamberdiev, Sh</creator><general>EDP Sciences</general><scope>BSCLL</scope></search><sort><creationdate>201309</creationdate><title>COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses</title><author>Rathna Kumar, S. ; Tewes, M. ; Stalin, C. S. ; Courbin, F. ; Asfandiyarov, I. ; Meylan, G. ; Eulaers, E. ; Prabhu, T. P. ; Magain, P. ; Van Winckel, H. ; Ehgamberdiev, Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1996-52aba7f916565730cf4fe788a82d8a89774b8b86fe6ffe11d903d129e8dfced43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cosmological parameters</topic><topic>gravitational lensing: strong</topic><topic>quasars: individual: SDSS J1001+5027</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathna Kumar, S.</creatorcontrib><creatorcontrib>Tewes, M.</creatorcontrib><creatorcontrib>Stalin, C. S.</creatorcontrib><creatorcontrib>Courbin, F.</creatorcontrib><creatorcontrib>Asfandiyarov, I.</creatorcontrib><creatorcontrib>Meylan, G.</creatorcontrib><creatorcontrib>Eulaers, E.</creatorcontrib><creatorcontrib>Prabhu, T. P.</creatorcontrib><creatorcontrib>Magain, P.</creatorcontrib><creatorcontrib>Van Winckel, H.</creatorcontrib><creatorcontrib>Ehgamberdiev, Sh</creatorcontrib><collection>Istex</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathna Kumar, S.</au><au>Tewes, M.</au><au>Stalin, C. S.</au><au>Courbin, F.</au><au>Asfandiyarov, I.</au><au>Meylan, G.</au><au>Eulaers, E.</au><au>Prabhu, T. P.</au><au>Magain, P.</au><au>Van Winckel, H.</au><au>Ehgamberdiev, Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2013-09</date><risdate>2013</risdate><volume>557</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory, and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3 ± 3.3 days (1σ, 2.8% uncertainty), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the velocity dispersion of the lensing galaxy, in combination with deep Hubble Space Telescope imaging.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201322116</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2013-09, Vol.557
issn 0004-6361
1432-0746
language eng
recordid cdi_istex_primary_ark_67375_80W_HJBD7XLD_B
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects cosmological parameters
gravitational lensing: strong
quasars: individual: SDSS J1001+5027
title COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COSMOGRAIL:%20the%20COSmological%20MOnitoring%20of%20GRAvItational%20Lenses&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Rathna%20Kumar,%20S.&rft.date=2013-09&rft.volume=557&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201322116&rft_dat=%3Cistex%3Eark_67375_80W_HJBD7XLD_B%3C/istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true